
Efficient, Yet Robust Extraction of Variability
Information from Linux Makefiles

Andreas Ruprecht
andreas.ruprecht@fau.de

Valentin Rothberg
valentin.rothberg@lip6.fr

Daniel Lohmann
dl@cs.fau.de

System Software Group
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

and
Inria / LIP6 Paris

https://cados.cs.fau.de

FOSD Meeting ’15

supported by

mailto:andreas.ruprecht@fau.de
mailto:valentin.rothberg@lip6.fr
mailto:dl@cs.fau.de
https://cados.cs.fau.de


The undertaker Toolchain

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

Makefile
arch/x86/init.c
arch/x86/entry32.S
arch/x86/...
lib/Makefile
kernel/sched.c
. . .

ϕCPP ∧ ϕKconfig ∧ ϕKbuild

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Introduction 2



Recent Developments

Extraction accuracy improvements for Kconfig

Code/Speed improvements (C++11, incremental SAT solving)
Undertaker-CheckPatch (Valentin Rothberg):

Analysis of patches submitted into the kernel
Comparison of the before and after states of the files changed
by the currently checked patch
Improved reporting of newly introduced/fixed/unchanged defects

Problem: Kbuild extractor, golem, is very slow!

⇒ Currently, no Kbuild data used in Undertaker-CheckPatch

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Introduction 3



Recent Developments

Extraction accuracy improvements for Kconfig

Code/Speed improvements (C++11, incremental SAT solving)
Undertaker-CheckPatch (Valentin Rothberg):

Analysis of patches submitted into the kernel
Comparison of the before and after states of the files changed
by the currently checked patch
Improved reporting of newly introduced/fixed/unchanged defects

Problem: Kbuild extractor, golem, is very slow!

⇒ Currently, no Kbuild data used in Undertaker-CheckPatch

0

2,000

4,000

6,000

8,000

10,000

12,000
v2

.6
.3

2
v2

.6
.3

3
v2

.6
.3

4
v2

.6
.3

5
v2

.6
.3

6
v2

.6
.3

7
v2

.6
.3

8
v2

.6
.3

9
v3

.0
v3

.1
v3

.2
v3

.3
v3

.4
v3

.5
v3

.6
v3

.7
v3

.8
v3

.9
v3

.1
0

v3
.1

1
v3

.1
2

v3
.1

3
v3

.1
4

v3
.1

5
v3

.1
6

v3
.1

7
v3

.1
8

v3
.1

9

Ti
m

e
in

se
co

nd
s

Linux version

runtime of golem

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Introduction 3



Recent Developments

Extraction accuracy improvements for Kconfig

Code/Speed improvements (C++11, incremental SAT solving)
Undertaker-CheckPatch (Valentin Rothberg):

Analysis of patches submitted into the kernel
Comparison of the before and after states of the files changed
by the currently checked patch
Improved reporting of newly introduced/fixed/unchanged defects

Problem: Kbuild extractor, golem, is very slow!

⇒ Currently, no Kbuild data used in Undertaker-CheckPatch

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Introduction 3



Table of Contents

Introduction

Fast Kbuild Data Extraction

Using the Data

Conclusion

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 4



How To Do It Fast?

Dietrich (2012): Parsing (e.g., KbuildMiner) is not robust
across versions
regarding make language complexity

⇒ probe Kbuild and infer impact of options on file selection.
But: Parsing is fast, while probing has become really slow

Idea:
Use parsing-based approach for the “simple” cases
Detect unparseable situation
Switch to more expensive, but possibly more resilient probing approach
on demand.

As it turns out: Parsing Kbuild can be fast, accurate and robust!

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 5



How To Do It Fast?

Dietrich (2012): Parsing (e.g., KbuildMiner) is not robust
across versions
regarding make language complexity

⇒ probe Kbuild and infer impact of options on file selection.
But: Parsing is fast, while probing has become really slow

Idea:
Use parsing-based approach for the “simple” cases
Detect unparseable situation
Switch to more expensive, but possibly more resilient probing approach
on demand.

As it turns out: Parsing Kbuild can be fast, accurate and robust!

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 5



How To Do It Fast?

Dietrich (2012): Parsing (e.g., KbuildMiner) is not robust
across versions
regarding make language complexity

⇒ probe Kbuild and infer impact of options on file selection.
But: Parsing is fast, while probing has become really slow

Idea:
Use parsing-based approach for the “simple” cases
Detect unparseable situation
Switch to more expensive, but possibly more resilient probing approach
on demand.

As it turns out: Parsing Kbuild can be fast, accurate and robust!

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 5



Parser Implementation

I developed a modular parser, minigolem, in Python

Core parser only processes files in generic way, project-specific
“plug-in modules” implement actual extraction logic

⇒ Easy adaption for other projects (Busybox, Coreboot)

⇒ To treat additional special cases, only a small module has to be
written instead of modifying existing code

⇒ Core parser: 192 LoC, Linux modules: 508 LoC

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 6



Parser Implementation

I developed a modular parser, minigolem, in Python

Core parser only processes files in generic way, project-specific
“plug-in modules” implement actual extraction logic

⇒ Easy adaption for other projects (Busybox, Coreboot)

⇒ To treat additional special cases, only a small module has to be
written instead of modifying existing code

⇒ Core parser: 192 LoC, Linux modules: 508 LoC
0

0.5

1

1.5

2
v2

.6
.3

2
v2

.6
.3

3
v2

.6
.3

4
v2

.6
.3

5
v2

.6
.3

6
v2

.6
.3

7
v2

.6
.3

8
v2

.6
.3

9
v3

.0
v3

.1
v3

.2
v3

.3
v3

.4
v3

.5
v3

.6
v3

.7
v3

.8
v3

.9
v3

.1
0

v3
.1

1
v3

.1
2

v3
.1

3
v3

.1
4

v3
.1

5
v3

.1
6

v3
.1

7
v3

.1
8

v3
.1

9

Ti
m

e
in

se
co

nd
s

Linux version

runtime of minigolem

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 6



What about accuracy? (x86 architecture, v3.19)

golem minigolem
Files found (total) 15,072 (96.1%) 15,303 (97.6%)
Files in both approaches 14,944
⇒ Logically equivalent1 PCs 14,831 (99.24%)

All remaining formulas represent more accurate constraints
in the parsing approach!

359 extra files found only by the parser

Less than 90 files missing in minigolem, but present in golem

Not limited to this architecture/revision!

1Checked with Limboole (http://fmv.jku.at/limboole)
Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 7

http://fmv.jku.at/limboole


What about accuracy? (x86 architecture, v3.19)

golem minigolem
Files found (total) 15,072 (96.1%) 15,303 (97.6%)
Files in both approaches 14,944
⇒ Logically equivalent1 PCs 14,831 (99.24%)

All remaining formulas represent more accurate constraints
in the parsing approach!

359 extra files found only by the parser

Less than 90 files missing in minigolem, but present in golem

Not limited to this architecture/revision!
1Checked with Limboole (http://fmv.jku.at/limboole)

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Fast Kbuild Data Extraction 7

http://fmv.jku.at/limboole


v2.6.32
v2.6.33
v2.6.34
v2.6.35
v2.6.36
v2.6.37
v2.6.38
v2.6.39

v3.0
v3.1
v3.2
v3.3
v3.4
v3.5
v3.6
v3.7
v3.8
v3.9

v3.10
v3.11
v3.12
v3.13
v3.14
v3.15
v3.16
v3.17
v3.18
v3.19

alp
ha

armavr
32

blac
kfi

n cri
s frv ia6

4
m32

r
m68

k

micr
ob

laz
e

mips

mn10
30

0
pari

sc

pow
erp

c
s39

0
sco

re sh
sparc um x86

xte
nsa

Li
nu

x
ve

rs
io

n

Analyzed architecture

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Percentage of logically equivalent presence conditions (golem ⇔ minigolem)



Daily Analysis of linux-next

With the parser, overhead is small enough to also include Kbuild
data into Undertaker-CheckPatch

Daily, incremental analysis of the linux-next development tree

Detection of symbolic violations (i.e., reference to missing symbols)
integrated into upstream scripts/checkkconfigsymbols.py

∼50 defects reported and fixed (since January)

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Using the Data 9



Daily Analysis of linux-next

4

1

6

5

3

2

linux-next git tree

git reset --hard commit_1
undertaker-checkpatch -p commit_2
undertaker-checkpatch -p commit_3

git reset --hard commit_4
undertaker-checkpatch -p commit_5

...

Defect analysis

commit_3

New defect:
kernel/smp.c:B0:12:15
...

Defect reports
Notifications
to developers

✉
Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Using the Data 10



Conclusion and Future Work

Highly accurate extraction of variability data from Kbuild by
parsing is feasible

Undertaker-CheckPatch can now take all layers of variability
in Linux into account

Daily analysis uncovers defects right when they are introduced

How can we check more than just dead/undead #ifdefs?

Can we use “something else” for remaining corner cases?

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Conclusion 11



Conclusion

Questions?
andreas.ruprecht@fau.de

Ruprecht Kbuild Variability Extraction (FOSD Meeting ’15) Conclusion 12


	Introduction
	Fast Kbuild Data Extraction
	Using the Data
	Conclusion

