Efficient, Yet Robust Extraction of Variability
Information from Linux Makefiles

Andreas Ruprecht Valentin Rothberg Daniel Lohmann
andreas.ruprecht@fau.de valentin.rothberg@lip6.fr dl@cs.fau.de

System Software Group
Friedrich-Alexander University Erlangen-Niirnberg (FAU)
and
Inria / LIP6 Paris

https://cados.cs.fau.de

FOSD Meeting '15

supported by DI G

mailto:andreas.ruprecht@fau.de
mailto:valentin.rothberg@lip6.fr
mailto:dl@cs.fau.de
https://cados.cs.fau.de

The UNDERTAKER Toolchain

Kconfig MEMORY_MODEL
FLATMEM
SPARSEMEM i
DISCONTIGMEM~—____
depends on

Makefile
arch/x86/init.c
arch/x86/entry32.5
arch/x86/...
lib/Makefile
kernel/sched.c

PCPP A PKconfig N PKbuild

SAT
Engine

- #ifdef CONFIG_HOTPLUG_CPU

endif

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Introduction 2

Recent Developments

m Extraction accuracy improvements for KCONFIG

m Code/Speed improvements (C++11, incremental SAT solving)

® UNDERTAKER-CHECKPATCH (Valentin Rothberg):
= Analysis of patches submitted into the kernel

= Comparison of the before and after states of the files changed
by the currently checked patch

= Improved reporting of newly introduced/fixed/unchanged defects

B Problem: KBUILD extractor, GOLEM, is very slow!

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Introduction

Recent Developments

runtime of GOLEM mmmm
O
o™
e}
N
>

12,000

10,000
8,000
6,000
4,000

SPUOJ3s ul swl |

Linux version

Kbuild Variability Extraction (FOSD Meeting '15) Introduction

Ruprecht

O

Recent Developments

m Extraction accuracy improvements for KCONFIG

m Code/Speed improvements (C++11, incremental SAT solving)

® UNDERTAKER-CHECKPATCH (Valentin Rothberg):
= Analysis of patches submitted into the kernel
= Comparison of the before and after states of the files changed
by the currently checked patch
= Improved reporting of newly introduced/fixed/unchanged defects

B Problem: KBUILD extractor, GOLEM, is very slow!

m = Currently, no KBUILD data used in UNDERTAKER-CHECKPATCH

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Introduction 3

Table of Contents

Fast KBUILD Data Extraction

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction

How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust

B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction

How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust
B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow

B |dea:
= Use parsing-based approach for the “simple” cases
m Detect unparseable situation
= Switch to more expensive, but possibly more resilient probing approach
on demand.

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction 5

How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust
B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow

m |dea:

= Use parsing-based approach for the “simple” cases
m Detect unparseable situation

B As it turns out: Parsing KBUILD can be fast, accurate and robust!

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction 5

Parser Implementation

®m | developed a modular parser, MINIGOLEM, in Python

m Core parser only processes files in generic way, project-specific
“plug-in modules” implement actual extraction logic

= Easy adaption for other projects (BusyBox, COREBOOT)

= To treat additional special cases, only a small module has to be
written instead of modifying existing code

= Core parser: 192 LoC, Linux modules: 508 LoC

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction

Parser Implementation

runtime of MINIGOLEM mmmm

1.5

Time in seconds
=

0.5

v2.6.32
v2.6.33
v2.6.34
v2.6.35
v2.6.36
v2.6.37
v2.6.38
v2.6.39

v3.0
v3.1
v3.2
v3.3
v3.4
v3.5
v3.6
v3.7
v3.8

Linux version

v3.9
v3.10

v3.11

v3.12
v3.13
v3.14
v3.15
v3.16
v3.17

v3.18
v3.19

O Ruprecht

Kbuild Variability Extraction (FOSD Meeting '15)

Fast Kbuild Data Extraction

What about accuracy? (x86 architecture, v3.19)

‘ GOLEM ‘ MINIGOLEM
Files found (total) ‘ 15,072 (96.1%) ‘ 15,303 (97.6 %)
Files in both approaches 14,944
= Logically equivalent’ PCs 14,831 (99.24 %)

m All remaining formulas represent more accurate constraints
in the parsing approach!

m 359 extra files found only by the parser

B Less than 90 files missing in MINIGOLEM, but present in GOLEM

O !Checked with LIMBOOLE (http://fmv.jku.at/limboole)

Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction 7

http://fmv.jku.at/limboole

What about accuracy? (x86 architecture, v3.19)

‘ GOLEM ‘ MINIGOLEM
Files found (total) ‘ 15,072 (96.1%) ‘ 15,303 (97.6 %)
Files in both approaches 14,944
= Logically equivalent’ PCs 14,831 (99.24 %)

m All remaining formulas represent more accurate constraints
in the parsing approach!

m 359 extra files found only by the parser

B Less than 90 files missing in MINIGOLEM, but present in GOLEM

m Not limited to this architecture/revision!

O !Checked with LIMBOOLE (http://fmv.jku.at/limboole)

Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Fast Kbuild Data Extraction 7

http://fmv.jku.at/limboole

Linux version

& &
LT & 9
<\~\\<} & <

Analyzed architecture

2 » At
& E LI EF IS FE LTS TS &
© S

+ Percentage of logically equivalent presence conditions (GOLEM <> MINIGOLEM)

Daily Analysis of 1inux-next

m With the parser, overhead is small enough to also include KBUILD
data into UNDERTAKER-CHECKPATCH

m Daily, incremental analysis of the linux-next development tree

m Detection of symbolic violations (i.e., reference to missing symbols)
integrated into upstream scripts/checkkconfigsymbols.py

m ~50 defects reported and fixed (since January)

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Using the Data 9

Daily Analysis of 1inux-next

Defect analysis

git reset --hard commit_1
undertaker-checkpatch -p commit 2
undertaker-checkpatch -p commit 3

git reset --hard commit_4
undertaker-checkpatch -p commit 5

commit 3

o

w

New defect:

:

*

kernel/smp.c:B0:12:15|

o

Cewns®

.,

*
|--¢|—I.h------;

Notifications
linux-next git tree Defect reports to developers

Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Using the Data 10

Conclusion and Future Work

m Highly accurate extraction of variability data from KBUILD by
parsing is feasible

m UNDERTAKER-CHECKPATCH can now take all layers of variability
in Linux into account

m Daily analysis uncovers defects right when they are introduced

®m How can we check more than just dead/undead #ifdefs?

m Can we use “something else” for remaining corner cases?

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Conclusion

11

Conclusion

Questions?

andreas.ruprecht@fau.de

O Ruprecht Kbuild Variability Extraction (FOSD Meeting '15) Conclusion

12

	Introduction
	Fast Kbuild Data Extraction
	Using the Data
	Conclusion

