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Recent Developments

m  Extraction accuracy improvements for KCONFIG

m  Code/Speed improvements (C++11, incremental SAT solving)

®  UNDERTAKER-CHECKPATCH (Valentin Rothberg):
= Analysis of patches submitted into the kernel

= Comparison of the before and after states of the files changed
by the currently checked patch

= Improved reporting of newly introduced/fixed/unchanged defects

B Problem: KBUILD extractor, GOLEM, is very slow!
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Recent Developments

m  Extraction accuracy improvements for KCONFIG

m  Code/Speed improvements (C++11, incremental SAT solving)

®  UNDERTAKER-CHECKPATCH (Valentin Rothberg):
= Analysis of patches submitted into the kernel
= Comparison of the before and after states of the files changed
by the currently checked patch
= Improved reporting of newly introduced/fixed/unchanged defects

B Problem: KBUILD extractor, GOLEM, is very slow!

m = Currently, no KBUILD data used in UNDERTAKER-CHECKPATCH
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Fast KBUILD Data Extraction
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How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust

B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow
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How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust
B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow

B |dea:
= Use parsing-based approach for the “simple” cases
m Detect unparseable situation
= Switch to more expensive, but possibly more resilient probing approach
on demand.
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How To Do It Fast?

m Dietrich (2012): Parsing (e.g., KBUILDMINER) is not robust
B across versions
= regarding MAKE language complexity

= probe KBUILD and infer impact of options on file selection.

But: Parsing is fast, while probing has become really slow

m |dea:

= Use parsing-based approach for the “simple” cases
m Detect unparseable situation

B As it turns out: Parsing KBUILD can be fast, accurate and robust!
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Parser Implementation

®m | developed a modular parser, MINIGOLEM, in Python

m  Core parser only processes files in generic way, project-specific
“plug-in modules” implement actual extraction logic

= Easy adaption for other projects (BusyBox, COREBOOT)

= To treat additional special cases, only a small module has to be
written instead of modifying existing code

= Core parser: 192 LoC, Linux modules: 508 LoC
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Parser Implementation

runtime of MINIGOLEM mmmm
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What about accuracy? (x86 architecture, v3.19)

‘ GOLEM ‘ MINIGOLEM
Files found (total) ‘ 15,072 (96.1%) ‘ 15,303 (97.6 %)
Files in both approaches 14,944
= Logically equivalent’ PCs 14,831 (99.24 %)

m  All remaining formulas represent more accurate constraints
in the parsing approach!

m 359 extra files found only by the parser

B Less than 90 files missing in MINIGOLEM, but present in GOLEM

O !Checked with LIMBOOLE (http://fmv.jku.at/limboole)
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What about accuracy? (x86 architecture, v3.19)

‘ GOLEM ‘ MINIGOLEM
Files found (total) ‘ 15,072 (96.1%) ‘ 15,303 (97.6 %)
Files in both approaches 14,944
= Logically equivalent’ PCs 14,831 (99.24 %)

m  All remaining formulas represent more accurate constraints
in the parsing approach!

m 359 extra files found only by the parser

B Less than 90 files missing in MINIGOLEM, but present in GOLEM

m  Not limited to this architecture/revision!

O !Checked with LIMBOOLE (http://fmv.jku.at/limboole)
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Daily Analysis of 1inux-next

m  With the parser, overhead is small enough to also include KBUILD
data into UNDERTAKER-CHECKPATCH

m  Daily, incremental analysis of the linux-next development tree

m  Detection of symbolic violations (i.e., reference to missing symbols)
integrated into upstream scripts/checkkconfigsymbols.py

m  ~50 defects reported and fixed (since January)
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Daily Analysis of 1inux-next

Defect analysis

git reset --hard commit_1
undertaker-checkpatch -p commit 2
undertaker-checkpatch -p commit 3

git reset --hard commit_4
undertaker-checkpatch -p commit 5

commit 3
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linux-next git tree Defect reports to developers
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Conclusion and Future Work

m Highly accurate extraction of variability data from KBUILD by
parsing is feasible

m  UNDERTAKER-CHECKPATCH can now take all layers of variability
in Linux into account

m Daily analysis uncovers defects right when they are introduced

®m  How can we check more than just dead/undead #ifdefs?

m  Can we use “something else” for remaining corner cases?
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Conclusion

Questions?

andreas.ruprecht@fau.de
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