

Achieving Run-time Evolution of Dynamic Software Product Lines through a Variability Modeling Approach

Lorena Arcega FOSD 2015

Index

- Introduction
- Background
- Evolution challenges
- Evolution strategy
- Case Study
- Conclusions

Jobd. Chinese and a series of the series of

Dynamic Software Product Lines (DSPLs) extend existing product line engineering approaches by moving their capabilities at run-time.

Software evolution has emerged as a key research field in software engineering.

However, Dynamic Software Product Lines (DSPLs) evolution has not yet deserved enough attention.

This work addresses the use of DSPLs to achieve the evolution by means of integrating new developed components.

PervML DSL

DSL for describing pervasive systems using high-level abstraction concepts.

J. Muñoz. *Model Driven Development of Pervasive Systems. Building a Software Factory.* PhD thesis, Universidad Politécnica de Valencia, 2008.

PervML Model

Feature Modelling

A widely used formalism for modeling and reasoning about commonality and variability of a system.

S. She, R. Lotufo, T. Berger, A. Wąsowski and K. Czarnecki. *Reverse Engineering Feature Models*. In Prodeedings of the 33rd International Conference on Software Engineering, ICSE'11.

Feature Modelling

Weavig Model

/w.usj.es

Background

Model-based Reconfiguration Engine (MoRE) Translate context changes into changes in the activation/deactivation of features. Then these changes are translated into reconfiguration actions that modify the system components accordingly.

C. Cetina. *Achieving Autonomic Computing through the Use of Variability Models at Run-time.* PhD thesis, Universidad Politécnica de Valencia, 2010.

Model-based Reconfiguration Engine (MoRE)

Challenge 1

Co-evolution as in SPLs but maintaining more models such as the context model and the reconfigurations.

Evolution Challenges

Challenge 2

Keep the models partially connected to the running system and keep the interaction between the running system and the context throughout the evolution.

Evolution Challenges

Challenge 1

Co-evolution: If the assets evolve the variability specification must to evolve and vice versa.

Evolution Challenges

Challenge 2

Keep the models partially connected to the system and keep the interaction between the system and the context.

DSPL Models V2

- Smart Hotel case study:
 - Simulated environment.
 - Average occupancy of about 18 simultaneous clients.
 - MoRE reconfigures the system following the context changes triggered by the clients.

Case Study

- Evolution in the Smart Hotel:
 - Eight versions were developed at design-time.
 - Initial derivation from version 1 to version 8.
 - MoRE reconfigured the architecture of the system.
 - An evolution to one of the next versions was performed.

This work address the evolution of a DSPL by integrating newly developed components.

The evaluation of our strategy in the Smart Hotel DSPL has shown that the models were evolved while the current configuration of the Smart Hotel kept running.

Lorena Arcega FOSD 2015

larcega@usj.es

http://eps.usj.es/svit/

Campus Universitario Villanueva de Gállego Autov. A-25 Zaragoza - Huesca, Km 299 50830 • Villanueva de Gállego • Zaragoza T. (34) 976 060 100 • F. (34) 976 077 581