
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Sandro Schulze (TU Braunschweig)
Wolfram Fenske (University of Magdeburg)

Automated Detection of
Variability-Aware Code Smells

@sanschul

sanschul@tu-bs.de

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 2

Code as You Like…

Many reasons for breaking with coding practices

But long-term consequences take revenge

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 3

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 4

Code Smells

-  Are common (see last slide)
-  Impede maintainability & evolvability

[OlbrichESEM2009, AbbesCSMR2011]

-  Need special treatment
-  Removal by refactoring
-  Tool-supported change

-  Take language elements & mechanisms into account

“If it stinks, change it”.
 -- Grandma Beck, discussing child-rearing philosophy

Variability mechanisms (e.g., #ifdefs) are NOT
considered for code smell definition

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 5

Recap

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 6

FOSD Meeting 2014
FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variability

ANNOTATION BUNDLE in MySQL, file mysys/thr_alarm.c

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 7

FOSD Meeting 2014
FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variability

ANNOTATION BUNDLE in MySQL, file mysys/thr_alarm.c

LARGE FEATURE

LATENTLY UNUSED PARAMETER

INTER FEATURE CLONES

LONG REFINEMENT CHAINS (FOP)

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 8

FOSD Meeting 2014 à VaMoS 2015

Code Smells Revisited: A Variability Perspective

Wolfram Fenske
Otto-von-Guericke-University Magdeburg

Magdeburg Germany
wfenske@ovgu.de

Sandro Schulze
TU Braunschweig

Braunschweig, Germany
sanschul@tu-braunschweig.de

ABSTRACT
Highly-configurable software systems (also called software prod-
uct lines) gain momentum in both, academia and industry. For
instance, the Linux kernel comes with over 12 000 configuration
options and thus, can be customized to run on nearly every kind of
system. To a large degree, this configurability is achieved through
variable code structures, for instance, using conditional compila-
tion. Such source code variability adds a new dimension of com-
plexity, thus giving rise to new possibilities for design flaws. Code
smells are an established concept to describe design flaws or decay
in source code. However, existing smells have no notion of variabil-
ity and thus do not support flaws regarding variable code structures.
In this paper, we propose an initial catalog of four variability-aware
code smells. We discuss the appearance and negative effects of
these smells and present code examples from real-world systems.
To evaluate our catalog, we have conducted a survey amongst 15
researchers from the field of software product lines. The results
confirm that our proposed smells (a) have been observed in existing
product lines and (b) are considered to be problematic for common
software development activities, such as program comprehension,
maintenance, and evolution.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Design, Languages

Keywords
Design Defects, Code Smells, Variability, Software Product Lines

1. INTRODUCTION
Code smells are an established concept to describe that a soft-

ware system suffers from design flaws and code decay [12]. Usu-
ally, a code smell intrinsically indicates the need for restructuring
the source code by means of refactoring. As a result, the code be-
comes easier to understand and thus easier to maintain and evolve.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
VaMoS ’15, January 21 - 23 2015, Hildesheim, Germany
Copyright 2015 ACM 978-1-4503-3273-6/15/01 ...$15.00.
http://dx.doi.org/10.1145/2701319.2701321

Over the last decade, a variety of work has addressed the detec-
tion [30, 43] and correction of code smells [29]. Moreover, the im-
pact of code smells on different aspects of software development,
such as evolution, maintenance, or program comprehension, has
been studied [1, 21, 22, 44]. Complementarily, anti-patterns have
been proposed to describe more profound shortcomings, for in-
stance, shortcomings that arise from the occurrence of several code
smells in concert [7]. Hence, a certain maturity has been reached
and thus, code smells are a well-established concept for traditional
(mostly object-oriented) software systems.

In the recent past, however, highly-configurable software sys-
tems (also known as software product lines (SPLs)) gained much
attention in both, academia and industry. Such systems usually en-
compass a vast number of related programs (also called a program
family), which are based on a common platform [8]. The notion of
features is used to communicate commonalities and variabilities in
a program family, and thus, to distinguish between particular pro-
grams. In this context, a feature is an increment in functionality,
visible to a stakeholder.

An advantage of the SPL approach is that a feature is imple-
mented only once but can be reused in many different programs,
based on a user-specified configuration. As a result, the SPL ap-
proach improves, for instance, flexibility, time-to-market, or the
reliability of programs. For implementing SPLs, different varia-
bility mechanisms exist, which basically follow one of two ways:
Composition-based mechanisms aim at modularizing all code (and
non-code) artifacts that belong to a particular feature. By contrast,
annotation-based mechanisms provide a virtual separation of fea-
tures by annotating the respective code just-in-place [19]. In either
case, variability is implemented explicitly and thus, is part of the
code base. This, in turn, may not only increase the complexity
of the source code and thus, impede comprehension and mainte-
nance [6, 41]. More than that, it also limits the application of ex-
isting techniques, such as source code analyses, because current
approaches do not address variability.

We argue that it is necessary to take variability into account as
a first-class concept for code smells and their detection. Only then
can we extend the well-established foundations of code smells to
the domain of configurable software systems. This is of special im-
portance, because such systems are defined with longevity, which
inherently leads to code decay during evolution.

In this paper, we address the aforementioned problem by revisit-
ing code smells in the light of variability. To this end, we inject the
notion of variability into existing code smells, resulting in an initial
catalog of variability-aware code smells. Particularly, we make the
following contributions:

• In this paper, we propose four code smells that take variabil-
ity into account. Basically, we take existing code smells as a
foundation and lift them up to SPLs, resulting in variability-

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 9

Code Quality Matters…so do Code Smells

[INTER-FEATURE CODE CLONES]
“Our industry partner is struggling with inter-feature
code clones due to a lack of awareness. ...”

[ANNOTATION BUNDLE]
“. . . in Linux, I have observed that in some cases a lot
of #ifdefs are used in a method and some of them are
nested making the method longer and more
complicated.”

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 10

Variability-Aware Code Smells
1.  Defining variability-aware code smells and initial

assessment

2.  (Automated) Detection of variability-aware code smells

3.  Comprehensive, empirical evaluation
 - Occurrence
 - Harmfulness

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 11

A Metric-Based Approach

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 12

src2srcML

cppStats

C sources

stats.csv
Feature Locations  
feature constants, 
nesting, 
…

source.xml
Syntactic Info 
functions, 
caller-callee, 
…

combine

Feature  
Syntax  

+ 
Metrics

detect

Results  
x.c:11: Annotation Bundle: 0.9 
y.c:42: Large Feature: 0.7 
z.c:66: Latently Unused: 0.6 
…

Code Smell 
Templates Parametrization+

Concept & Architecture

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 13

Example: ANNOTATION BUNDLE
FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variability

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 14

FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variability

ANNOTATION BUNDLE – Metrics

LOC = 25

LOAC = 18

NOFL = 5

NOFCdup= 7

ND = 1

LOC – Lines of Code
LOAC – Lines of Annotated Code
NOFL – Num of Feature Locations

NOFC – Num of Feature Constants
(w/ duplicates)
ND – Nesting Depth (aggregated)

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 15

ANNOTATION BUNDLE – Metrics
FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variabilityw1 ⇤
LOAC

LOC
⇤NOFL w2 ⇤

NOFCdup

NOFL
w3 ⇤

ND

NOFL

LOC = 25

LOAC = 18

NOFL = 5

NOFCdup= 7

ND = 1

+ + metricbundle =

Metricbundle = 1,73

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 16

Taming Magic Numbers
How to decide whether the code is smelly?

1. Ranked list of all identified locations

2. Cut off the top k entries

3. Manual inspection (with cross validation)

(4. Learn more characteristics of smelly code)

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 17

Limitations/Future Work
Do such smells really occur in real-world systems?
-  Study on open source C systems of different size
-  Extend detection on other variability mechanisms
Are our defined smells really an issue?
-  Evaluate smells in a “smelly”context

à change frequency, error proneness
developer smells

-  Experiments wrt program comprehension
What should we do with detected smells?
-  Propose removal strategies
-  Integrate detection results in development process

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 18

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 4

Code Smells

-  Are common (see last slide)
-  Impede maintainability & evolvability

[OlbrichESEM2009, AbbesCSMR2011]

-  Need special treatment
-  Removal by refactoring
-  Tool-supported change

-  Take language elements & mechanisms into account

“If it stinks, change it”.
 -- Grandma Beck, discussing child-rearing philosophy

Variability mechanisms (e.g., #ifdefs) are NOT
considered for code smell definition

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 15

ANNOTATION BUNDLE – Metrics
FOSD’15 Neuer Content

Ex.: Annotation Bundle I
1 sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;
3 if (thd_lib_detected == THD_LIB_LT &&
4 !pthread_equal(pthread_self(), alarm_thread)) {
5 #if defined(MAIN) && !defined(__bsdi__)
6 printf("thread_alarm in process_alarm\n");
7 fflush(stdout);
8 #endif
9 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);
11 #endif
12 return;
13 }
14 #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
16 mysql_mutex_lock(&LOCK_alarm);
17 #endif
18 process_alarm_part2(sig);
19 #ifndef USE_ALARM_THREAD
20 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
22 #endif
23 mysql_mutex_unlock(&LOCK_alarm);
24 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
25 #endif
26 return;
27 }

Annotation Bundle in MySQL, file mysys/thr_alarm.c

Wolfram Fenske, Sandro Schulze Code Smell Detection for Software With Annotation-Based Variabilityw1 ⇤
LOAC

LOC
⇤NOFL w2 ⇤

NOFCdup

NOFL
w3 ⇤

ND

NOFL

LOC = 25

LOAC = 18

NOFL = 5

NOFCdup= 7

ND = 1

+ + metricbundle =

Metricbundle = 1,73

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 17

Limitations/Future Work
Do such smells really occur in real-world systems?
-  Study on open source C systems of different size

Are our defined smells really an issue?
-  Evaluate smells in a “smelly”context

! change frequency, error proneness
developer smells

-  Experiments wrt program comprehension

What should we do with detected smells
-  Propose removal strategies
-  Integrate detection results in development process

13. May 2015 | Sandro Schulze | Automated Detection of Variability-Aware Code Smells | Folie 19

Call for Code Smells

..to give us your smells (or respective experiences)!

