19th International Conference on Fundamental Approaches to Software Engineering (FASE)

“FASE 2016

At ETAPS 2016: 2-8 April 2016, Eindhoven, The Netherlands ~ http://www.etaps.org/index.php/2016/fase

FASE is concerned with the foundations on which Abstracts due
software engineering is built. Submissions should make i
novel contributions to making software engineering a 16 October 2015 23:38 AoF (oot 2]
more mature and soundly-based discipline. 18 December 2015

Contributions should be supported by appropriate Submission

arguments and validation. Contributions that combine 15 pages + 2 extra pages exclusively for references
Springer LNCS format

the development of conceptual and methodological FASE'16 will not use a rebuttal phase
advances with their formal foundations and tool support Keynote Speaker
are particularly encouraged. We welcome contributions Oscar Nierstrasz, Universitat Bern, Switzerland

on all such fundamental approaches, including: and other ETAPS invited speakers

Program Co-Chairs

i H H H i inli Perdita Stevens, University of Edinburgh
'. SOft}Nar'e e'nglneerl'ng aS' an englneerlng dISCIPIIne’ Andrzej Wasowski, IT University of Copenhagen
including its interaction with and impact on society;
. . . . Program Committee
m Requirements engineering: capture, consistency, and Sagar Chaki, Camegie Mellon University
change management of software requirements; R AT A
m Software architectures: description and analysis of the Stéphanc bcsese, A Lo Nord Eoren
arCh_Itec_ture Of |nd|V|dUa| syStems or CIaSSeS Of Alexander Egyed, Johannes Kepler Universitat Linz
. Bernd Fischer, Stellenbosch U it
app“ca_tl_ons_' Milos Gligoric, Unive?;?ty t;fslcllwsgis act lﬁ:baor\sac-ch:r‘:;?i‘g:
m Specification, design, and implementation of particular Stefania Gnesi, ISTI-CNR

Valérie Issarny, INRIA Paris - Rocquencourt

classes of systems: adaptive, collaborative, embedded,

. N Marta Kwiatkowska, University of Oxford
distributed, mobile, pervasive, or service-oriented Barbara Kapig, Universitat Duisbyra:Essen, 1
I T Y M.

Hunting for
Variability

Bugs

lago Abal

Aleksandar Dimovski
Claus Brabrand

Jean Melo
Andrzej Wasowski

IT UNIVERSITY OF COPENHAGEN PROCESS AND SYSTEM MODELS GROUP

Motivation

» Variability is out there
m Allows to make systems more adapatable
m Decreasing cost and time-to-market
m Providing for portability
m Allows massive user side tailoring (think highly
configurable software systems)
» But variability brings a cost
m Many recognize that managing exponentially many
software variants is difficult.
m Parsing bugs, typing bugs, linking bugs, and semantic
bugs caused by variability are known
m Many projects have started, including TypeChef,
Undertaker, SPLLift, SNIP, Provelines, and Clafer ;)

» Variability bugs are horrible and nasty beasts
» Weapon #1: Variability abstractions
» Weapon #2: Effect-based abstractions

B AGENDA

Let’s have a look at a bug

index : kernel/git/stable/linux-stable.git

t Linux kernel stable tree

summary refs log tree | commit diff stats

author I” Peter Hurley <peter@hurleysoftware.com> 2013-01-30 17:43:49 (GMT)
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> 2013-02-04 23:40:28 (GMT)
commit 7acf6cd80b201f77371a5374a786144153629be8 (patch)

tree 5222e9eca68f3b37ad62d1eb74966705f12d1f96

parent 16559ae48c76f1ceb976b9719dea62b77eb5d06b (diff)

pty: Fix BUG()s when ptmx_open() errors out

If pmtx_open() fails to get a slave inode or fails the pty open(),

the tty is released as part of the error cleanup. As evidenced by the
first BUG stacktrace below, pty close() assumes that the linked pty has
a valid, initialized inode* stored in driver data.

Also, as evidenced by the second BUG stacktrace below, pty_unix98_shutdown()
assumes that the master pty's driver_data has been initialized.

1) Fix the invalid assumption in pty clese().
2) Initialize driver_data immediately so proper devpts fs cleanup occurs.

Fixes this BUG:

[815.868844] BUG: unable to handle kernel NULL pointer dereference at 0000000000000028

[815.869018] IP: [<ffffffff81207bcc>] devpts pty kill+Ox1lc/@xad

[815.869190] PGD 7c775067 PUD 79deb067 PMD ©

[815.869315] Oops: 0000 [#1] PREEMPT SMP

[815.869443] Modules linked in: kvm_intel kvm snd hda intel snd hda codec snd hwdep snd pcm snd seq midi

See http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=
7acf6cdB80b201f77371a5374a786144153629be8

) Andrze] Wasowski, IT University of Copenhagen 5

The Variability Bugs Database Q search the database

& unux Dereferencing uninitialized pointer causes Kernel crash view raw ies

During the initialization of a UNIX98 pseudo-terminal by ptmx_open, a tty_struct structure is allocated. But before its pointer field
link->driver_data is properly initialized, ptmx_open will try to allocate an inode structure for the PTY slave. If this allocation fails,
some cleanup code must be executed to free the already allocated resources. Namely, pty_close will be called to release the
previously opened tty, and this eventually dereferences tty->link->driver_data, which is assumed to have been already initialized.

But fixed by commit 7acf6cd80b2
Parent commit tree here

Related links ~

Type use of variable before initialization (CWE 457)

Config UNIX98 PTYS && DEVPTS_MULTIPLE_INSTANCES (2nd degree)
C-features FunctionPointers

Fix-in code

Location drivers/tty/

Simplified bug Simplified patch Single function bug Trace Discussion

See http://vbdb.itu.dk/, and add your own bugs

© Andrzej Wasowski, IT University of Coy

Let’s have a look at a bug
Dereferencing uninitialized pointer causes Kernel crash

void pts_sb_from_inode(struct inode * inode)

1 #ifdef CONFIG_DEVPTS_MULTIPLE_INSTANCES > Domain knowledge

2 if (inode->i_sb->s_magic == » Data flow

#endif

3 mendt » Inter-procedural data-flow

void pty_close(struct tty_struct * tty) > Pointers

4 #ifdef CONFIG_UNIX98_PTYS » Nested structs

5 pts_sb_from_inode (tty->driver_data); > [rea| bug] Ccross

s #endif compilation unit and
TR SUbsystem

- » [real bug] function

7 tty = kzalloc(sizeof (#tty), GFP_KERNEL);
g pty_close (tty)

pointers (pty_close)

Bug 7acf6ed, see http://vbdb.itu.dk/#bug/linux/7acf6cd

lago Abal, Claus Brabrand, Andrzej Wasowski. 42 variability bugs in the Linux kernel: a qualitative
analysis. ASE 2014: 421-432 + journal submission

© Andrzej Wasowski, IT University of Copenhagen 7

Let’s look at another bug

Control-flow
1| extern int preempt_count;
2
3| void tcp_twsk_destructor() {
4 #ifdef CONFIG_TCP_MD5SIG
5 preempt_count--;
6 #endif
70)
8
9| void inet_twdr_hangman (long dat.
10 void (*fn) (); 1
11 fn = (void (*) ()) data;
12 fn(); /] C
13| }
14
el5(void __run_timers () {
16 long data = (long) &tcp_tws!
17 int pc = preempt_count;
18 inet_twdr_hangman (data) ;
019 if (pc != preempt_count) BUI
20| }

Bug 657e964e74

Type casts, pointers to ints
Do not loose shapes

» Unsafe casts help generic

programing

Dynamic data structures
with pointers

Aliasing: which pointers
point to the same place
Function pointers used
heavily (OO)

Inter-procedural data-flow not
possible without control-flow
[elsewhere] conditional
struct components (with
incompatible casts)

Variability Bug Hunting
Is For Tough Warriors,
Not for The Faint of Heart

» Variability bugs are horrible and nasty beasts
» Weapon #1: Variability abstractions
» Weapon #2: Effect-based abstractions

B AGENDA

Variability bugs involve variability

Surprise, surprise!

» Linux has many configuration options
m 5 000 — 15 000, depending how you count

» Performance of lifted analyses depend on the size of the
configuration space

» Many configs can be involved in a trace, but many may be
irrelevant for a bug

» Bugs we found so far are up to degree 5, not 15 000

Programs are state transformers

Denotational semantics by example ...

For simplicty, we work with IMP, not with C ...

1 X
2 X
3 X

7]
_ |
= X + 1 [z — 1]
=]

Executions transform domain elements

Example, in the previous slide: Constant Propagation Lattice C

e I SS
N\j =

[z — n] means that « has known constant value
[— T]: z the value of = can have any value (value not known)
[z — L]: = can have no value (inconsistency)

Moving up in the lattice decreases knowledge (information)

An execution on a more abstract domain is called an analysis
Other abstract domains: signs, intervals, types, ...

vV VvV vV vV VY

Execution of a program with #ifdefs

Gives a lifted analysis

variational program

1 X .= 0,
z#lj(A: X + 1;
Y= AVB #endif

S#if B

6 X = 1 el

(symbolic) lifted stores

.........

true — [— T]

an—>[xn—>1]

)
|

“Join” abstraction confounds all variants

When you need a fast imprecise analysis, for instance in an IDE

[z — 1]
ale |- b L
Y= AVB 110 [z 1] & 1]
11 -
R N [z 1]
[z 1]
ajoin(a) = |_| 7 (@) A| B / lub U
keK ? (1) :/[1:»—>1] [z — T]
JOlIl
H“ 101 —
keK S [z 0]

Variational abstract interpretation translates this to executions (cf. Claus’ talk)

J. Midtgaard. A. Dimovski. C. Brabrand. A. Wasowski. Systematic Derivation of Correct Variability-Aware

Program Analyses. Science of Computer Programming 2015

© Andrzej Wasowski, IT Universi

ity of Copenhagen

15

“Project” ignores some variants

» Sampling
» Scale up using divide & conquer
» Differentiate precision for

variants (say per SIL level) ali(a) = [rex key (@)

feature model proj (@) ifkEg
m——— i) - I 70 47

1]

Al B [z —

01 project 4 A 9 [z 1]
g z—=1l]———— 1|0

1] 1 o T o 0]

J. Midtgaard. A. Dimovski. C. Brabrand. A. Wasowski. Systematic Derivation of Correct Variability-Aware
Program Analyses. Science of Computer Programming 2015

Andrzej Wasowski, IT University of Copenhagen 16

“Ignore” a feature

Inject domain knowledge to soundly help the analysis "go trough"

’y{fl’f2}(5) =)‘kl_)(k N {fla f3})

\ 1

fl 1_ {flan’fS}%B {flva}%B
f2 E .—>x€{5,6}
fs (1]

B 2 — 2 e {3,5,6)
fi[1]
f2£ v—»l‘€{3}
f3 10

l 4
™ , 7
affy,p3(0) = AR U{keK\k/zkﬂ{fhfz}} bk

Composing Abstractions

join
oroject A J—» join(project4) A
A 7
X join(project) ®
v y N join(project_ 4)
project_ 4 join s w

-A —— join(project_ 4)

- .
o . m/
A calculus of variability abstractions

a n= oM | a2 | aoa | a®a

Welcome to Reconfigurator

variational
program

ainbljuooa

abstracted
variational
program

derive lifted
analysis

Q
&
= | B
Qo
Q| <
o
>

abstract
lifted
analysis

derive

» One simplistic reconfigurator for data-flo%d Java
» One simplistic reconfigurator for model-checking and (f)Promela

Aleksandar S. Dimovski, Claus Brabrand, Andrzej Wasowski. Variability Abstractions:iading Precision

for Speed in Family-Based Analyses. ECOOP 2015

© Andrzej Wasowski, IT University of Copenhagen 19

Reconfigurator
Example

¢=AVDB

-

Abstracted program

#i1(2)

> X = X + 1;
1#if (A) s#tendif
> X = X + 1; join proj «H#HIT (2)
s #endi oz °MA it (%)
«#if (B) 6 x =1
5 X =1 7 else
s #endif 8 skip

s #endif

B m

» The outcome can be analyzed using non-lifted scann
» Single product tools are more mature (handle more language!)

© Andrzej Wasowski, IT University of Copenhagen 20

Reconfigurator

Performance evaluation

D ey
us ms ms
2004 150+ 09
M M 40
150 100 ml 30
100 +
50 20
50 104
[e ey o —_— - 0 - o —
A S DyppDa A S Dny2 Dy A S Dyj2 Di
1.0x 1.5x 2.Tx 1.2x 2.0x 24x 1.8x 1.7x 47x
2504 M 204 20 -
200 M 15 - 15
150 - 104 10
100 +
50 5] 5 [l
0o o —3 o o — 0 - e —
A S Dnp Dy A S Dy Dy A S Dy Ds
1.2x 1.6x 2.8x 1.2x 1.9x 12x 2.2x 1.9x 28x
Prevayler: :publisher() BerkeleyDB: :main () GPL: :display()
N=8 N=40 N=106

Fig. 9. Analysis time for reaching definitions (above) and uninitialized variables
(below): A (baseline) and § (sharing) vs. D/, (medium abstraction) and D,
(maximum abstraction).

A. Dimovski. C. Brabrand, A. Wasowski. Variability Abstractions: Trading Precision for
Family-Based Analyses. ECOOP 2015

A. Dimovski, A. Al-Sibahi, C. Brabrand, A. Wasowski. Family-Based Model Checking
Family-Based Model Checker. Under review.

© Andrzej Wasowski, IT University of Copenhagen 21

» Variability bugs are horrible and nasty beasts
» Weapon #1: Variability abstractions
» Weapon #2: Effect-based abstractions

B AGENDA

enhagen 23

Let’s detect this error with Coccinelle

;(f(jpe T » Coccinelle matches patterns over traces
3 TH X; > Inter-procedurally
i E; . .
el oem » Supports CPP (improving thanks to lago Abal)

6

7% x = kzalloc(...);
8 ... when != (x = E)
9 when != &x
10 * *X

e Linux kernel build system
~about aliasing

size = sizeof(*new) + new_head_len + new_tail_len;

- new = kzalloc(size, GFP_KERNEL);

if (!new)
return -ENOMEM;
[...]

- tty->head = ((u8 %) new) + sizeof(*new);
tty->tail = new->head + new_head_len;
tty->head_len = new_head_len;
tty->tail_len = new_tail_len;

© ©® N O oA W N =

See http://coccinelle.lip6. fr/ by Julia Lawall and many others

© Andrzej Wasowski, IT University of Copenhagen 25

A more semantic "Coccinelle

1 @@

2 type T;

3 T+ X;

4 expression E;

5 @@

6

7 % x = kzalloc(...);

8 ... when != (x = E)
9 when != &x
10 * *X

Declare a sem
Track assignment
No writes and
A dereference

vV vV vV VvV VY

Work in progress (perhaps
To do this we need to know semantic‘properties of statements and

1 @@
2 pointer a;
3 @@

4
5 %# a = kzalloc(...);

6 ... when != writes(a)
7 % deref(a)

expressions (such as writes(a) or deref(a))

© Andrzej Wasowski, IT University of Copenhagen 26

Computing the semantic abstraction
Using a type & effect (shape & effect) system

Fl—lvallv:T&repr&ga p # reg
I'=&lv:T* & ptrref, ¢ & ¢

ADDR

DYy T & ref, ¢ & ¢
I'=lv:T & ¢ & pUread,

LvALUE-EXP

Shape: what is the memory structure at a given address

Effect: reading, writing to a location, Linux specific effects

26 pages formal definition for a large part of C & ocaml implementation
We can now type check most of simplified bugs from VBDB

The type checker infers effects for each program point

vV V. v VvV Y

Conclusion

- 1 Welcome to Reconfigurator
Variability Bug Hunting
Is For Tough Warriors, variational derive

lifted
program analysis
3 5
g s
& 812
S g
s]
abstracted derive abstract
variational ™€, e
program analysis
» One simplistic reconfigurator for data-flows@nd Java |

» One simplistic reconfigurator for model-checking and (f)Rromela
E

e e

Computing the semantic abstraction

Using a type & effect (shape & effect) system

THY T & ref, (& ¢ p # reg
Ik &lv:T* & ptr ref, (& ¢

ADDR

!@wg nly LVALUE-Exp

DHEY 1y T & ref, (& ¢
THWw:T & ¢ & pUread,

» Shape: what s the memory structure at a given address

> Effect: reading, writing to location, Linux specific effects

» 26 pages formal definition for large part of G & ocaml implementation
> We can now type check most of simplified bugs from VBDB

> The type checker infers effects for each program point

© Andrzej ¥

