
Towards Incremental Model Slicing
for SPL Regression Testing

Sascha Lity, Hauke Baller, Ina Schaefer, May 14th, 2015

Technische Universität Braunschweig

Institut für Programmierung
und Reaktive Systeme

Motivation

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 2
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Motivation

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 2
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Motivation

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 2
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Product-by-Product Testing

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 3
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Product-by-Product Testing

Reuse Artifacts/Results

Reuse Artifacts/Results

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 3
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Product-by-Product Testing

Reuse Artifacts/Results

Reuse Artifacts/Results

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 3
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Applying Regression Testing for SPLs

Regression testing allows for incremental SPL testing [TTK04, Eng10]

Regression Testing validates whether modified software
behaves as intended, and modifications have not adversely
impacted the software’s quality. [Rot96]

Software version testing vs. software variant testing?

Reuse of test artifacts? ⇒ Delta Modeling [CHS15]

Incremental SPL testing? ⇒ Delta-oriented [LSKL12, Loc12, LLL+14]

Retest decision? ⇒ Slicing [AHKL93, BH93, GHS92]

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 4
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Applying Regression Testing for SPLs

Regression testing allows for incremental SPL testing [TTK04, Eng10]

Regression Testing validates whether modified software
behaves as intended, and modifications have not adversely
impacted the software’s quality. [Rot96]

Software version testing vs. software variant testing?

Reuse of test artifacts? ⇒ Adaption of Delta Modeling [CHS15]

Incremental SPL testing? ⇒ Delta-oriented [LSKL12, Loc12, LLL+14]

Retest decision? ⇒ Slicing [AHKL93, BH93, GHS92]

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 4
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Program/Model Slicing

Static program projection technique by Weiser [Wei81]

Preserves syntax and semantics w.r.t. slicing criterion

Based on control/data dependencies

Model slicing [JWZC02, KLB12, ACH+13] adapts concept for state-based
models

Slicing Criterion

(S,V)

p p'

(S,V)(S,V)

M M‘

Slicing Criterion
B2

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 5
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Variability-aware Slicing [ACLF11, KLB12, KS14]

Conditioned Model Slicing of Feature-Annotated
State Machines

Jochen Kamischke
Institut für Programmierung

und Reaktive Systeme
Mühlenpfordtstr. 23

Braunschweig, Germany
j.kamischke@tu-bs.de

Malte Lochau
Institut für Programmierung

und Reaktive Systeme
Mühlenpfordtstr. 23

Braunschweig, Germany
lochau@ips.cs.tu-bs.de

Hauke Baller
Institut für Programmierung

und Reaktive Systeme
Mühlenpfordtstr. 23

Braunschweig, Germany
h.baller@tu-bs.de

ABSTRACT
Model-based behavioral specifications build the basis for
comprehensive quality assurance techniques for complex
software systems such as model checking and model-based
testing. Various attempts exist to adopt those approaches
to variant-rich applications as apparent in software product
line engineering to efficiently analyze families of similar soft-
ware systems. Therefore, models are usually enriched with
capabilities to explicitly specify variable parts by means of
annotations denoting selection conditions over feature pa-
rameters. However, a major drawback of model-based en-
gineering is still its lack of scalability. Model slicing pro-
vides a promising technique to reduce models to only those
objects being relevant for a certain criterion under consid-
eration such as a particular test goal. Here, we present an
approach for slicing feature-annotated state machine mod-
els. To support feature-oriented slicing on those models,
our framework combines principles of variability encoding
and conditioned slicing. We also present an implementation
and provide experimental results concerning the efficiency
of the slicing algorithm.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.13 [Software Engineering]: Reusable Soft-
ware, Reuse Models

General Terms
Design, Theory

Keywords
Software Product Lines, Model-Based Software Engineering.

1. INTRODUCTION
Model-based software engineering provides a rich collec-

tion of modeling languages and corresponding techniques for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$10.00.

the specification, documentation, maintenance, and verifi-
cation/validation of high-quality software systems in a sys-
tematic way. In particular, modeling approaches for specify-
ing the operational behavior of a software system are often
based on state-transition diagrams such as UML state ma-
chines [18]. Thereupon, various applications of those models
to verification/validation techniques like model-based test-
ing and model checking have been proposed [5, 1].

However, the major drawback of those approaches is still
their lack of scalability. This is even worse in the presence
of explicit variability at model level as apparent, e.g., in
software product line engineering [15]. Herein, models are
enriched with capabilities to specify common and variable
parts occurring in a family of similar product variants. For
instance, model elements are annotated with selection con-
ditions, i.e., propositional formulas over feature parameters
to guide the assembling of model variants w.r.t. a particu-
lar feature configuration [5]. Hence, such feature-annotated
models integrate any potential behaviors of all product vari-
ants of an SPL within a virtual, so-called 150% model. This
additional model dimension as tailored by the valid prod-
uct configuration space of an underlying domain feature
model [11] further complicates the application of model-
based analysis techniques to variant-rich, real world prob-
lems represented by an SPL.

Model slicing provides a promising approach to handle
the complexity problem of behavioral models by perform-
ing static, i.e., syntactical model reductions that preserve
some aspects of model semantics w.r.t. a slicing criterion un-
der consideration [22, 21]. Therefore, model slicing extracts
those model parts affecting certain computational units only
and, at the same time, ensuring the resulting model slice to
preserve a syntactically well-formed model structure. Slicing
has gained applications in various fields of program analysis
for reverse engineering, program integration, software met-
rics, component reuse, etc. [3]. Model slicing adopts the
concepts of program slicing to reduce verification/validation
efforts. For instance, in model-based testing, choosing test
goals as slicing criteria allows for efficient test case genera-
tion, debugging, and change impact analysis during regres-
sion testing, whereas slicing along a certain model property,
e.g., given as an LTL formula, decreases model checking
complexity. However, recent model slicing approaches are
incapable to cope with models enriched with feature anno-
tations. In the presence of variable model parts, the further
model dimension has to be taken into account when slic-
ing for a particular criterion in order to yield a well-formed

9

Program Slicing in the Presence of
Preprocessor Variability

Frederik Kanning
TU Braunschweig

Braunschweig, Germany
Email: f.kanning@tu-braunschweig.de

Sandro Schulze
TU Braunschweig

Braunschweig, Germany
Email: sanschul@tu-braunschweig.de

Abstract—Program slicing is a common means to support
developers in examining the source code with respect to de-
bugging, program comprehension, or regression testing. While
a vast amount of techniques exist, they are mostly tailored to
single software systems. However, with the increasing importance
of variable and highly-configurable systems, such as the Linux
kernel, the number of software variants, subject to analysis,
increases dramatically. Consequently, it is infeasible to apply
slicing on each variant in isolation. To overcome this problem,
we propose variability-aware slicing, a technique that can deal
with source code variability, specifically conditional compilation
as introduced by the C preprocessor. Particularly, we provide
details of our variability-aware dependence analysis for program
slicing, point out benefits of our slicing technique, and mention
current limitations and future work.

I. INTRODUCTION

Program slicing is a common and well-established method
for detailed program analysis, which has been proposed more
than three decades ago by Weiser [1]. Basically, program
slicing allows to decompose a program with respect to its
computational dependencies. As a result, it is possible to
inspect the program in more detail, for instance, to assess the
(potential) influence of a set of statements (the program slice)
on a particular point in the program (the slicing criterion).
Meanwhile, numerous techniques have been proposed that ex-
tend the original (static) slicing technique of Weiser and thus,
support developers in one or more tasks, such as debugging,
program comprehension, or regression testing [2], [3].

While existing techniques are very mature and applicable
even at large scale for single (monolithic) programs, they are
only of limited use for variable software systems. Such systems
usually constitute a whole family of related programs that
can be derived from a common code base [4]. To this end,
configuration options, or features allow users to specify vari-
able parts in such systems. A common means to express this
variability are preprocessor directives, in particular conditional
compilation, as provided by the C preprocessor tool CPP [5],
[6]. While this allows users to tailor a program according to
specific needs, it also gives rise to an exponential number
of configurations. For instance, the Linux kernel consists of
more than 11, 000 features, which allow for billions of possible
configurations to be compiled and generated on demand.

In this paper we bridge the gap between slicing and
source code variability by proposing a technique that supports
exploration and static analysis of variable software systems.

Research problem: Obviously, statically analyzing bil-
lions of configurations separately is infeasible. On the other
hand, current slicing techniques mainly work on preprocessed
programs (i.e., a particular configuration), that is, the CPP
directives are evaluated and removed before analysis, and thus,
variability is not supported. In other words, such kind of
analysis is not variability-aware [7]. As a result, these slicing
techniques are neither applicable to variable software systems
nor can detect effects of variability, such as errors caused by
feature interactions [8].

Contribution: The main contribution of this paper is a
concept and prototypical implementation for variability-aware
intraprocedural slicing that works on annotated C programs
(i.e., before preprocessing CPP directives). To this end, we
extend and instrument TYPECHEF, a research infrastructure
for variability-aware analysis [9], [10]. Particularly, we provide
details on our variability-aware dependence analysis and how
we use this analysis to compute precise slices that include
variability information. Moreover, we motivate our technique
by means of an example and possible applications.

While the current implementation exhibits still some lim-
itations, we argue that it provides an important foundation
for taming variability and thus, provide efficient and scalable
program analysis for variable software systems.

II. BACKGROUND

In the following, we provide information about source
code variability using CPP directives. Moreover, we lay the
foundations of our slicing technique by introducing the basic
concepts of program slicing.

A. Variable Systems with the CPP

The C preprocessor CPP is a tool that is tightly integrated
with the C programming language and that allows for develop-
ing variable software systems [6]. To this end, the CPP provides
capabilities to annotate variable code fragments at arbitrary
granularity using conditional compilation (a.k.a. #ifdefs).
As an example, we show a program excerpt in Figure 1 that
contains two variable code fragments: One variable fragment
(Line 6–8) redeclares variable c in the inner scope, while the
other one (Line 13–15) assigns a constant value to b. Both
fragments are optional and their in-/exclusion is controlled by
configuration options (a.k.a. features), by assigning (boolean)
values, so-called presence conditions, to each of them. In our

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.82

502

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.82

501

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.82

501

Slicing Feature Models
Mathieu Acher, Philippe Collet, Philippe Lahire

I3S – CNRS UMR 6070
Université Nice Sophia Antipolis, France

{acher,collet,lahire}@i3s.unice.fr

Robert B. France
Computer Science Department

Colorado State University, USA
france@cs.colostate.edu

Abstract—Feature models (FMs) are a popular formalism for
describing the commonality and variability of software product
lines (SPLs) in terms of features. As SPL development increas-
ingly involves numerous large FMs, scalable modular techniques
are required to manage their complexity. In this paper, we present
a novel slicing technique that produces a projection of an FM,
including constraints. The slicing allows SPL practitioners to find
semantically meaningful decompositions of FMs and has been
integrated into the FAMILIAR language.

Keywords-Feature Models; Software Product Lines; Slicing;

I. INTRODUCTION

The goal of software product line (SPL) engineering is to
produce a family of related program variants for a domain [1].
SPL development starts with an analysis of the domain to
identify commonalities and differences between the members
of the family. A common way is to describe variabilities of
an SPL in terms of features which are domain abstractions
relevant to stakeholders [2]. A Feature Model (FM) is used
to compactly represent all features in an SPL and define their
valid combinations [3], [4].

FMs are becoming increasingly complex. There are a num-
ber of factors that contribute to their growing complexity. A
contributing factor is that FMs are being used not only to
describe variability in software designs, but also variability in
wider system contexts [5], [6], [7]. For example, features may
refer to high-level requirements as well as to properties of
the software platform. Another contributing factor is the use
of multiple FMs to describe SPLs. It has been observed that
maintaining a single large FM for the entire system may not be
feasible [8], [5], [1], [9]. Following a model-based approach,
several FMs are usually designed to describe software features
at various levels of abstraction and to manage variability of
artifacts that are produced in different development phases [1],
[2]. In addition, organizations are increasingly faced with the
challenge of managing variability in product parts provided
by external suppliers [6], [10]. The need to support multiple
SPLs (also called product populations) makes developing SPLs
challenging [1]. Product populations with FMs consisting of
hundreds to thousands of features have been observed [11],
[12], [13]. Finally, automated extraction of FMs from large
implemented software systems [14], can produce FMs with
thousands of features.

Managing the complexity of building FMs with a large
number of features that are related in a variety of ways is
a two-fold challenge. On the one hand FM decomposition
techniques must be provided to better manage this complexity.
On the other hand, automated rigorous reasoning techniques

must be provided to relieve error-prone and tedious tasks
associated with manually analyzing FMs [13]. Naturally, with
FMs being handled by several stakeholders, or even different
organizations, techniques that provide good support for the
principles of separation of concerns seem particularly well-
suited solution to the problem of effective decomposition
of FMs. Two ways to support separation of concerns is to
provide mechanisms for extracting views from large FMs [15],
and to provide mechanisms for synthetizing large FMs from
smaller composable FMs. In previous work [17], we designed
a set of composition operators for FMs (insertion, merging,
aggregation) and defined semantic properties that must be
preserved during composition. In this paper we present a novel
slicing technique that produces a projection of an FM (a slice)
with respect to a set of selected features (slicing criterion). It
allows SPL developers to automatically obtain semantically
meaningful decompositions of FMs.

II. BACKGROUND: FEATURE MODELS

FMs were first introduced in the FODA method [8], which
also provided a graphical representation through Feature Dia-
grams. The two essential components of an FM are hierarchy
and variability. A FM hierarchy (typically a tree) structures
application features into multiple levels of increasing detail.
The variability aspect of an FM restricts the legal combination
of features and is expressed through a number of mechanisms.
The features may be optional or mandatory or may form Xor
or Or-groups. In addition, implies or excludes constraints that
cut across the hierarchy can be specified to express more
complex dependencies between features. We consider that
an FM is composed of a feature diagram (see Definition 1)
plus a set of constraints expressed in propositional logic (see
Definition 2). Figure 1a shows an example of an FM.

Definition 1 (Feature Diagram): A feature diagram FD =
�G, r,EMAND,FXOR,FOR, Impl, Excl� is defined as fol-
lows:

• G = (F , E) is a rooted tree where F is a finite set
of features and E ⊆ F × F is a finite set of edges
(edges represent top-down hierarchical decomposition of
features, i.e., parent-child relations between them) ;

• r ∈ F is the root feature ;
• EMAND ⊆ E is a set of edges that defines mandatory

features with their parents ;
• FXOR ⊆ P(F)×F and FOR ⊆ P(F)×F define feature

groups and are sets of pairs of child features together with
its common parent feature. The child features are either
exclusive (Xor-groups) or inclusive (Or-groups) ;

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

424

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 6
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

A1 A2

t1: e1/e2

B1 B2

t2: e3/e4

S

C1 C2

t4: e1/e2

t5: e2/

C

t3: e4/e5M
o

d
el

In
cr

em
en

ta
l

D
ep

en
d

en
cy

G
ra

p
h

A
d

ap
ta

ti
o

n

In
cr

em
en

ta
l

S
lic

e
C

o
m

p
u

ta
ti

o
n

DepM

S

C

A1

B1

C1

t1

t2

t4

t3

t5

A2

B2

C2

rcd gcd

rcd

gcd tcd

rcd gcd tcd

D
ep

en
d

en
cy

G
ra

p
h

Slicing Criterion

B1 B2

t2: e3/e4

S

S
lic

e

Core Variant

∆M

A2 A1

t6 : e2/e6

+δ1 : B1 B2

t2 : e3/e4
-δ2 :

B1 B2

t7 : e6/e4

+δ3 : C1 t8 : e3/e7

+

δ4 :

Regression Delta

∆DG

∆Slice

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

C1 C2

t4: e1/e2

t5: e2/

t8: e3/e7

C

t3: e4/e5

DepM

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

rcd gcd tcd

sd
rcd

gcd tcd

rcd gcd

gcd

tcd

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

+

++

rcd gcd tcd
+

sd +
rcd

gcd

+

tcd

+

rcd gcd

gcd
+

tcd

B1

t2

t3

-

gcd
-

tcd
-

Slicing Criterion

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

A1 A2

t1: e1/e2
+

t6: e2/e6

+

B1 B2

t7: e6/e4
+

+ +

S

B1

B2

t2: e3/e4

-

Variant One

Lity, Baller, Schaefer: Towards Incremental Model Slicing for Delta-oriented SPLs, SANER’15 [LBS15]

A1 A2

t1: e1/e2

B1 B2

t2: e3/e4

S

C1 C2

t4: e1/e2

t5: e2/

C

t3: e4/e5M
o

d
el

In
cr

em
en

ta
l

D
ep

en
d

en
cy

G
ra

p
h

A
d

ap
ta

ti
o

n

In
cr

em
en

ta
l

S
lic

e
C

o
m

p
u

ta
ti

o
n

DepM

S

C

A1

B1

C1

t1

t2

t4

t3

t5

A2

B2

C2

rcd gcd

rcd

gcd tcd

rcd gcd tcd

D
ep

en
d

en
cy

G
ra

p
h

Slicing Criterion

B1 B2

t2: e3/e4

S

S
lic

e

Core Variant

∆M

A2 A1

t6 : e2/e6

+δ1 : B1 B2

t2 : e3/e4
-δ2 :

B1 B2

t7 : e6/e4

+δ3 : C1 t8 : e3/e7

+

δ4 :

Regression Delta

∆DG

∆Slice

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

C1 C2

t4: e1/e2

t5: e2/

t8: e3/e7

C

t3: e4/e5

DepM

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

rcd gcd tcd

sd
rcd

gcd tcd

rcd gcd

gcd

tcd

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

+

++

rcd gcd tcd
+

sd +
rcd

gcd

+

tcd

+

rcd gcd

gcd
+

tcd

B1

t2

t3

-

gcd
-

tcd
-

Slicing Criterion

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

A1 A2

t1: e1/e2
+

t6: e2/e6

+

B1 B2

t7: e6/e4
+

+ +

S

B1

B2

t2: e3/e4

-

Variant One

Lity, Baller, Schaefer: Towards Incremental Model Slicing for Delta-oriented SPLs, SANER’15 [LBS15]

A1 A2

t1: e1/e2

B1 B2

t2: e3/e4

S

C1 C2

t4: e1/e2

t5: e2/

C

t3: e4/e5M
o

d
el

In
cr

em
en

ta
l

D
ep

en
d

en
cy

G
ra

p
h

A
d

ap
ta

ti
o

n

In
cr

em
en

ta
l

S
lic

e
C

o
m

p
u

ta
ti

o
n

DepM

S

C

A1

B1

C1

t1

t2

t4

t3

t5

A2

B2

C2

rcd gcd

rcd

gcd tcd

rcd gcd tcd

D
ep

en
d

en
cy

G
ra

p
h

Slicing Criterion

B1 B2

t2: e3/e4

S

S
lic

e

Core Variant

∆M

A2 A1

t6 : e2/e6

+δ1 : B1 B2

t2 : e3/e4
-δ2 :

B1 B2

t7 : e6/e4

+δ3 : C1 t8 : e3/e7

+

δ4 :

Regression Delta

∆DG

∆Slice

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

C1 C2

t4: e1/e2

t5: e2/

t8: e3/e7

C

t3: e4/e5

DepM

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

rcd gcd tcd

sd
rcd

gcd tcd

rcd gcd

gcd

tcd

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

+

++

rcd gcd tcd
+

sd +
rcd

gcd

+

tcd

+

rcd gcd

gcd
+

tcd

B1

t2

t3

-

gcd
-

tcd
-

Slicing Criterion

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

A1 A2

t1: e1/e2
+

t6: e2/e6

+

B1 B2

t7: e6/e4
+

+ +

S

B1

B2

t2: e3/e4

-

Variant One

Lity, Baller, Schaefer: Towards Incremental Model Slicing for Delta-oriented SPLs, SANER’15 [LBS15]

A1 A2

t1: e1/e2

B1 B2

t2: e3/e4

S

C1 C2

t4: e1/e2

t5: e2/

C

t3: e4/e5M
o

d
el

In
cr

em
en

ta
l

D
ep

en
d

en
cy

G
ra

p
h

A
d

ap
ta

ti
o

n

In
cr

em
en

ta
l

S
lic

e
C

o
m

p
u

ta
ti

o
n

DepM

S

C

A1

B1

C1

t1

t2

t4

t3

t5

A2

B2

C2

rcd gcd

rcd

gcd tcd

rcd gcd tcd

D
ep

en
d

en
cy

G
ra

p
h

Slicing Criterion

B1 B2

t2: e3/e4

S

S
lic

e

Core Variant

∆M

A2 A1

t6 : e2/e6

+δ1 : B1 B2

t2 : e3/e4
-δ2 :

B1 B2

t7 : e6/e4

+δ3 : C1 t8 : e3/e7

+

δ4 :

Regression Delta

∆DG

∆Slice

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

C1 C2

t4: e1/e2

t5: e2/

t8: e3/e7

C

t3: e4/e5

DepM

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

rcd gcd tcd

sd
rcd

gcd tcd

rcd gcd

gcd

tcd

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

+

++

rcd gcd tcd
+

sd +
rcd

gcd

+

tcd

+

rcd gcd

gcd
+

tcd

B1

t2

t3

-

gcd
-

tcd
-

Slicing Criterion

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

A1 A2

t1: e1/e2
+

t6: e2/e6

+

B1 B2

t7: e6/e4
+

+ +

S

B1

B2

t2: e3/e4

-

Variant One

Lity, Baller, Schaefer: Towards Incremental Model Slicing for Delta-oriented SPLs, SANER’15 [LBS15]

A1 A2

t1: e1/e2

B1 B2

t2: e3/e4

S

C1 C2

t4: e1/e2

t5: e2/

C

t3: e4/e5M
o

d
el

In
cr

em
en

ta
l

D
ep

en
d

en
cy

G
ra

p
h

A
d

ap
ta

ti
o

n

In
cr

em
en

ta
l

S
lic

e
C

o
m

p
u

ta
ti

o
n

DepM

S

C

A1

B1

C1

t1

t2

t4

t3

t5

A2

B2

C2

rcd gcd

rcd

gcd tcd

rcd gcd tcd

D
ep

en
d

en
cy

G
ra

p
h

Slicing Criterion

B1 B2

t2: e3/e4

S

S
lic

e

Core Variant

∆M

A2 A1

t6 : e2/e6

+δ1 : B1 B2

t2 : e3/e4
-δ2 :

B1 B2

t7 : e6/e4

+δ3 : C1 t8 : e3/e7

+

δ4 :

Regression Delta

∆DG

∆Slice

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

C1 C2

t4: e1/e2

t5: e2/

t8: e3/e7

C

t3: e4/e5

DepM

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

rcd gcd tcd

sd
rcd

gcd tcd

rcd gcd

gcd

tcd

S

t8

C

A1

B1

C1

t1

t7

t4

t6

t3

t5

A2

B2

C2

+

++

rcd gcd tcd
+

sd +
rcd

gcd

+

tcd

+

rcd gcd

gcd
+

tcd

B1

t2

t3

-

gcd
-

tcd
-

Slicing Criterion

A1 A2

t1: e1/e2

t6: e2/e6

B1 B2

t7: e6/e4

S

A1 A2

t1: e1/e2
+

t6: e2/e6

+

B1 B2

t7: e6/e4
+

+ +

S

B1

B2

t2: e3/e4

-

Variant One

Lity, Baller, Schaefer: Towards Incremental Model Slicing for Delta-oriented SPLs, SANER’15 [LBS15]

Discussion

Dependence on Differences
Number of model deltas

Impact/Distributability of changes

Worst Case
Distributed changes

No effort reduction

Average Case
Local changes

Exploit commonality

Benefits
1. Effort reduction for dependency graph generation

2. Direct derivation of slice changes

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 8
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Evaluation – BCS Case Study [LLLS12]

Body Comfort System

27 features ⇒ 11616 variants

Sampling subset: 18 Products
(incl. core) [OLZG11, LSKL12]

Sampling result ⇒ Order

Model size:
∅ Elements: 106
∅ States: 40
∅ Transition: 66
∅ Hierarchy Depth: 3

Finger
Protection

Body Comfort
System

Power
Window

Central
Locking
System

Automatic
Locking

Remote
Control

Key

Human
Machine
Interface

Manual
Power

Window

Automatic
Power

Window

Control
Alarm
System

Safety
Function

Interior
Monitoring

Alarm
System

Exterior
Mirror

Electric Heatable

require

require

require

Status
LED

Security
Door

System

LED Central
Locking
System

LED
Power

Window

LED
Exterior
Mirror

LED
Heatable

LED
Alarm
System

LED Finger
Protection

Control
Automatic

Power Window

require

exclude

require

Adjust Exterior
Mirror

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 9
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Evaluation – Dependency Graph (First Results)

6
4

9
7

9
6

1
3

4

9
4

1
2

7

1
3

9

6
6

1
0

9

1
6

3

8
7

1
2

4

8
9

1
0

1

1
0

2

9
6

1
4

7

6
9

4
0

9
6

9
4

0
9

9
2

1
6

1
7

9
5

6

8
8

3
6

1
6

1
2

9

1
9

3
2

1

4
3

5
6

1
1

8
8

1

2
6

5
6

9

7
5

6
9

1
5

3
7

6

7
9

2
1

1
0

2
0

1

1
0

4
0

4

9
2

1
6

2
1

6
0

9

4
7

6
1

0

4
6

5
6

4
5

6
0

8
9

1
1

4
3

7
1

8
0

0
1

1
5

9
0

2
1

4
5

3
7

4
1

7
3

1
7

3
7

4
1

7
6

3
0

3
9

1
6

 5
0

5
0

5
1

5
1

4
5

6
0

1
0

7
3

1

2
3

4
6

0

5000

10000

15000

20000

25000

30000

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

D

e
p

e
n

d
e

n
cy

 C
h

e
ck

s

Products

Elements

Checks Graph Norm.

Checks Graph Incr.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 10
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Evaluation – Slicing and Model Diff (First Results)

1
,6

9

0
,3

8

0
,4

3

0
,6

0
,6

8

0
,3

7

0
,5

4

0
,6

4

0
,6

0
,1

3

1
,3

6

0
,7

8

0
,2

9

0
,3

3

0
,8

0
,6

7

0
,0

9

3
8

8
 4

0
7

,0
5

4
2

8
,7

8

4
2

5
,6

3
9

7
,5

7

3
9

8
,2

9

4
1

7
,5

4

4
0

9
 4

2
7

,1

4
3

3
,2

6

4
1

5
,1

3

3
5

0
,7

8

4
4

9
,2

4

4
1

2
,8

1

3
8

7
,3

2

3
9

4
,0

8

3
9

6
,1

4

3
8

,9
2

3
4

,0
2

 6
2

,9
6

5
4

,5

5
8

4
2

,2
7

 6
7

,6
2

3
3

,4
5

9
7

,2
7

1
5

5
,3

4

5
7

,5

3
9

,1
5

3
0

,4
7

3
2

,6
7

2
9

,6
8

8
2

,8
9

3
0

,7
7

0

50

100

150

200

250

300

350

400

450

500

P0 P1 (13) P2 (34) P3 (23) P4 (20) P5 (19) P6 (49) P7 (13) P8 (22) P9 (40) P10 (23) P11 (22) P12 (19) P13 (21) P14 (21) P15 (40) P16 (27) P17 (22)

Ti
m

e
 in

 m
s

Products (# Equal Elements)

Slice Norm. Slice Diff. Time Slice Norm. Slice Incr.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 11
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

First Idea – Retest Coverage Criterion

Slice differences indicate retest potentials based
on the impact of model changes

What are retest requirements/goals?
Elements corresponding to slice differences
Elements connected to those elements

Applicable for selection and prioritization
(Pairwise) coverage of retest requirements/goals
Number of occurrences of a difference usable as weighting factor
Potential retest test case generation

Retest requirements/goals refer only to retestable behavior

Model parts not influenced by changes indicate behavior not to be
retested

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 12
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Conclusion & Future Work

Conclusion
Regression Testing ⇒ Incremental SPL testing

Incremental model slicing ⇒ Change impact analysis

Slice differences ⇒ Retest potentials

Retest decision ⇒ Retest coverage criterion

Future Work
Comprehensive evaluation

Extension of control and data dependency

Extension & optimization of implementation

Application for (evolution-aware) change impact analysis

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 13
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

Thank You for Your Attention! Any Questions?

IMoTEP
Integrated Model-based Testing of

Continuously Evolving Software
Product Lines

TU Braunschweig, Institute for Programming and Reactive Systems
Sascha Lity

Email: lity@ips.cs.tu-bs.de

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 14
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

References I

Kelly Androutsopoulos, David Clark, Mark Harman, Jens Krinke, and Laurence Tratt.
State-based Model Slicing: A Survey.
ACM Comput. Surv., 45(4):53:1–53:36, August 2013.

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
Slicing feature models.
In ASE’11, pages 424–427, 2011.

Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul London.
Incremental regression testing.
In Proceedings of the Conference on Software Maintenance, ICSM ’93, pages 348–357,
Washington, DC, USA, 1993. IEEE Computer Society.

Samuel Bates and Susan Horwitz.
Incremental program testing using program dependence graphs.
In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’93, pages 384–396, New York, NY, USA, 1993. ACM.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 15
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

References II

Dave Clarke, Michiel Helvensteijn, and Ina Schaefer.
Abstract Delta Modeling.
Mathematical Structures in Computer Science, 25(3):482–527, 2015.

Emelie Engström.
Exploring Regression testing and software product line testing - research and state of
practice.
Lic dissertation, Lund University, May 2010.

R. Gupta, M.J. Harrold, and M.L. Soffa.
An approach to regression testing using slicing.
In Software Maintenance, 1992. Proceerdings., Conference on, pages 299–308, Nov 1992.

Wang Ji, Dong Wei, and Qi Zhi-Chang.
Slicing Hierarchical Automata for Model Checking UML Statecharts.
In Formal Methods and Software Engineering, pages 435–446. Springer, 2002.

Jochen Kamischke, Malte Lochau, and Hauke Baller.
Conditioned Model Slicing of Feature-Annotated State Machines.
In FOSD’12, pages 9–16, 2012.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 16
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

References III

Frederik Kanning and Sandro Schulze.
Program Slicing in the Presence of Variability.
In ICSME’14 - ERA Track, 2014.

Sascha Lity, Hauke Baller, and Ina Schaefer.
Towards incremental model slicing for delta-oriented software product lines.
In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on, pages 530–534, March 2015.

Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz.
Delta-oriented Model-based Integration Testing of Large-scale Systems.
Journal of Systems and Software, 91:63–84, 2014.

Sascha Lity, Remo Lachmann, Malte Lochau, and Ina Schaefer.
Delta-oriented Software Product Line Test Models - The Body Comfort System Case
Study.
Technical Report 2012-07, Technische Universität Braunschweig, 2012.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 17
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

References IV

Malte Lochau.
Model-Based Conformance Testing of Software Product Lines.
PhD thesis, Technische Universität Braunschweig, 2012.

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity.
Incremental Model-Based Testing of Delta-Oriented Software Product Lines.
In TAP’12, pages 67–82. Springer, 2012.

S. Oster, M. Lochau, M. Zink, and M. Grechanik.
Pairwise Feature-Interaction Testing for SPLs: Potentials and Limitations.
In FOSD’11, 2011.

Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold.
Incremental Slicing Based on Data-Dependences Types.
In ICSM’01, page 158, 2001.

Gregg Rothermel.
Efficient, Effective Regression Testing Using Safe Test Selection Techniques.
PhD thesis, Clemson University, May 1996.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 18
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

References V

Antti Tevanlinna, Juha Taina, and Raine Kauppinen.
Product Family Testing: A Survey.
SIGSOFT Softw. Eng. Notes, 29(2):12–12, March 2004.

Heike Wehrheim.
Incremental Slicing.
In Formal Methods and Software Engineering, ICFEM’06, pages 514–528, 2006.

Mark Weiser.
Program slicing.
In ICSE’81, pages 439–449, 1981.

May 14th , 2015 Sascha Lity, Hauke Baller, Ina Schaefer Page 19
Towards Incremental Model Slicing for SPL Regression Testing Institut für Programmierung

und Reaktive Systeme

