Feature Modeling of Two Large-Scale Industrial
Software Systems: Experiences and Lessons
Learned

Daniela Lettner* Klaus Eder'

Paul Griinbacher*
*Christian Doppler Laboratory MEVSS

Herbert Prihofer?
Hnstitute System Software

Johannes Kepler University Linz, Austria
TKEBA AG, Linz, Austria

Abstract—Feature models are frequently used to capture the
knowledge about configurable software systems and product lines.
However, feature modeling of large-scale systems is challenging
as many models are needed for diverse purposes. For instance,
feature models can be used to reflect the perspectives of product
management, technical solution architecture, or product config-
uration. Furthermore, models are required at different levels
of granularity. Although numerous approaches and tools are
available, it remains hard to define the purpose, scope, and
granularity of feature models. In this paper we thus present
experiences of developing feature models for two large-scale
industrial automation software systems. Specifically, we extended
an existing feature modeling tool to support models for different
purposes and at multiple levels. We report results on the
characteristics and modularity of the feature models, including
metrics about model dependencies. We further discuss lessons
learned during the modeling process.

Index Terms—feature modeling, industrial software systems,
experience report.

I. INTRODUCTION AND MOTIVATION

Feature modeling was originally proposed as part of the
FODA method to elicit and represent commonalities and
variability of systems’ capabilities in a specific domain [1].
Feature models define features—the end-users’ (and cus-
tomers’) understanding of the general capabilities of systems
in the domain—and their relationships. Feature models, and
variability models in more general, are nowadays widely
used to capture the knowledge of domain experts regarding
customer-facing features, system capabilities and properties,
as well as configuration options [2], [3]. The term feature is
commonly used by customers, product managers, and engineers
to communicate about product characteristics [4]. However,
although numerous approaches and tools are available [5],
defining the purpose, scope, and granularity of feature models
remains hard, specifically when modeling large-scale industrial
software systems.

Regarding the purpose of feature models, researchers have
distinguished different modeling spaces [6], [7]: problem space
features generally refer to systems’ specifications established
during domain analysis and requirements engineering; solution
space features refer to the concrete systems created during
development; whereas configuration space features exist to
ease the derivation of products. Regarding the scope of feature
models in large-scale systems there is a consensus that single

978-1-4673-6908-4/15 © 2015 IEEE

386

monolithic feature models are inadequate to deal with the
complexity of industrial systems [8]-[10]. This has led, e.g., to
the development of multi product line approaches that support
modularizing feature models in various ways, as pointed out
in a systematic review [11]. Similarly, it has been shown
that feature models vary with respect to their granularity,
e.g., to distinguish high-level system features from lower-
level capabilities. Moreover, dependencies between different
feature models need to be managed. For instance, it is often
unclear how problem space features describing customer-facing
capabilities and their variability are related to solution space
features implementing this functionality; or how configuration
space features are related to configuration options used by
service engineers for customizing and fine-tuning a system.

Only few reports are available on how these different
feature models should be structured and organized, and what
kind of dependencies need to be considered. In particular,
there is a lack of reports on feature modeling in large-
scale systems. Organizations moving towards a product line
approach or feature-oriented development paradigm can benefit
from examples and lessons learned when planning their own
modeling approach.

In this paper, we thus present experiences and lessons learned
of developing feature models for two large-scale software
systems in the domain of industrial automation. The modeling
process, performed with our industry partner Keba as part
of an ongoing research cooperation, allowed us to study the
purpose, scope, and granularity of feature models. Furthermore,
we adapted and extended a state-of-the-art feature modeling
approach to better support the characteristics and needs of large-
scale industrial software systems. In particular, we extended
the FeatureIDE [12], an Eclipse-based feature modeling tool, to
improve support for multi-purpose, multi-level feature models.
Our report can be useful for practitioners facing challenges
of modularizing feature models and managing dependencies
between features in the problem space, solution space and
configuration space.

The paper is organized as follows: we proceed by summa-
rizing the industrial context and modeling requirements of
Keba in Section II. Section IIT presents our modeling approach.
Section IV describes the two investigated industrial systems,
our modeling process, and the extensions to the FeatureIDE

MODELS 2015, Ottawa, ON, Canada
MDE in Practice

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

modeling tool. Section V presents results on model character-
istics and Section VI discusses lessons learned. Section VII
relates our work with existing research on variability modeling
of large-scale systems. Section VIII rounds out the paper with
a conclusion and an outlook on future work.

II. INDUSTRIAL MODELING REQUIREMENTS

Keba (http://www.keba.com) develops and produces hard-
ware and software solutions for industrial automation. Their
products are globally marketed and exist in numerous variants
to address the requirements of customers in different market
segments such as injection molding machines, robotics, or
heating control systems.

As part of a research cooperation we recently studied the
development practices of KePlast, a 3.8 million LoC system
for the automation of injection molding machines [4], [13],
[14]. The data collected in workshops and interviews with
Keba’s senior developers, software architects, and product
managers allowed us to better understand the industrial context
for feature modeling in the large. Specifically, we found
that the term feature is widely used in the company. Not
surprisingly, the meaning of the term depends on role-specific
perspectives and needs in Keba’s current development process.
Product managers, for instance, use features to define the scope
of products from a market and customer perspective. They
document problem space features in product maps, i.e., matrices
that allow comparing related products over numerous features.
These spreadsheets comprise high-level system features, feature
associations, available hardware options, and references to
order numbers used by sales people. Architects use UML class
diagrams for modeling and documenting solution space features.
Software engineers further use a wide range of mechanisms
to implement variability, e.g., interfaces to hook in new
functionality; capabilities for adding, exchanging or reloading
modules; or support for defining specific I/O ports. Keba uses a
custom-developed configurator that defines configuration space
features guiding the derivation of KePlast applications [15].
This tool allows deriving initial products, which are then
customized by developers, who adapt existing features and add
new features to meet the customers requirements. Similarly, in
the robotics domain Keba offers a configuration tool as part
of their IDE to facilitate product customization.

A. An Example of a Feature

We use the KePlast feature MoldCavityPressureSensor to
illustrate that features exist in different forms and for different
purpose. In injection molding machines, the polymer raw
material is injected into a mold to shape it into the desired
form [16]. Molds can be of a single cavity or multiple cavities.
In multiple cavity molds, cavities can be identical and form
equal parts, however, cavities can also be unique and form
multiple different parts [17]. Cavity sensing is used to provide
a quality index of the injection-molded part. A pressure signal
is used for determining whether the cavity pressure curve
is repeatable between shots. The measured cavity pressures

indicate the quality of the produced parts. In case of anomalies,
it is likely that the quality of the produced parts degrades.

A representation of the feature MoldCavityPressureSensor
can be found in each modeling space and traces exist in
spreadsheets, KePlast platform code, and the source code
of the configuration tool. The feature is documented in the
problem space as an option in three of four variants of the
KePlast product map. In the solution space, the feature is
represented by the variable hw_cavityPressure. The sensor is
also shown on several user interface masks. Finally, regarding
the configuration space, the custom-developed configurator
allows selecting up to four sensors for measuring injection-
molded parts.

The example shows that the different stakeholder groups
manage the feature well within their scope of responsibility.
However, there are only few explicit links between system
features documented in spreadsheets, configuration options
documented in configurators, and software features defined in
UML diagrams, specification documents, or user manuals.

B. Requirements for Modeling

A feature modeling approach is needed for managing
multiple modeling spaces and inter-space dependencies be-
tween features. The approach also needs to better support
modularization to facilitate a divide-and-conquer modeling
strategy needed to deal with the complexity of large-scale
industrial systems. Specifically, the approach needs to meet
three requirements:

Requirement 1 — Feature models for different purpose. The
modeling spaces proposed in the literature (e.g., [6], [7])
are useful to distinguish different types of feature models
in complex systems. Feature models need a clear purpose
allowing a modeler to distinguish between customer-facing
features, software capabilities, and configuration decisions.

Requirement 2 — Feature models at different levels. Feature
models are needed at multiple levels of abstraction in the
different modeling spaces. Product managers may need to
describe groups of product features at different levels of
granularity. Also, the multi-layered architecture of many large-
scale systems suggests the use of hierarchically organized
variability models, as e.g., proposed in hierarchical product
lines. Furthermore, the need for complex product configuration
in multiple stages [18] calls for multiple levels of models in
the configuration space.

Requirement 3 — Dependencies between different feature
models. Modelers need to explicitly define dependencies
between feature models of different purpose that exist at
different levels. Many approaches have been proposed in this
regard, e.g., to model dependencies between different modeling
spaces [19], [20], between models of one space [21], [22] or
between different levels of abstraction [9], [23].

III. MODELING APPROACH

We extend feature modeling to support different modeling
spaces, modeling variability at different abstraction levels in

387

http://www.keba.com

{ Requirement 1 "Requirement 2 "Requirement 3

Purpose 1

* Element [Dependency

[| [t
|Feature l*—l| Collection |- | implemented by |
configured by
1
| Component |-

i
| mapped to |

Fig. 1: Modeling approach supporting feature models for different

purpose, at different levels, and dependencies between models.

each space, and dependencies between spaces. Figure 1 shows
a conceptual overview of our modeling extensions.

Feature models for different purpose. We assume multiple
feature models, each serving a different purpose. We follow
the idea of separating spaces proposed in [6] and distinguish
problem space, solution space, and configuration space features
as a foundation for defining role-specific views for product
management, software architecture, and product configuration.

Feature models at different levels. Our modeling approach
is influenced by the idea of configurable units, which was
proposed in the Common Variability Language (CVL) [24].
We use collections to support variability modeling at different
levels in each modeling space. Collections logically group
features and can be organized hierarchically to structure large
models. A component is a special kind of a collection used
to represent physical elements of a system (e.g., software
modules).

Dependencies between different feature models. Cross-tree
constraints (i.e., requires and excludes) have been originally
proposed in [1]. More complex relationships in the form of
generic propositional formulas have been proposed later in the
literature [25]. Beyond that, our extensions allow defining
different types of inter-space dependencies when relating
features or collections from different modeling spaces. For
instance, the problem space feature MoldCavityPressureSensor is
implemented_by the solution space user interface mask Injection-
Maski. The configuration space option CavityPressureSensor of
KePlast’s configurator is mapped_to the solution space variable
hw_CavityPressure. The problem space feature MoldCavityPres-
sureSensor documented in a product map is configured_by the
configuration space option CavityPressureSensor.

IV. MODELING KEMOTION AND KEPLAST

Keba is currently exploring the benefits of the feature-
oriented software development paradigm, which is seen as
promising to ease software maintenance, to create awareness
for feature reuse, to automate product derivation, and to
improve documentation. The term feature is widely used in the
company to communicate during development and maintenance,
independent of the specific methods and technologies used [4].
For instance, sales people identify the needs of potential
customers in terms of new system features that are required.
Product managers drive the development of different KeMotion
and KePlast product variants by defining product line features

addressing market needs. Domain engineers develop and
maintain product features and provide the required variability.
Application engineers build concrete applications by selecting,
adapting and extending features meeting the specific customer
requirements. Commissioning engineers fine-tune systems by
calibrating the properties of features.

We have been developing feature models of KeMotion
and KePlast, two industrial systems comprising hardware and
software components. The aim of partially modeling software
aspects of the two systems was to better understand the purpose,
scope, granularity, and dependencies of features and feature
models in this organization. The goal of our modeling activities
was not to completely model the investigated systems. However,
the experience still allowed us to learn how multi-purpose,
multi-level variability models can be organized. In particular,
we report model metrics and insights related to modeling spaces,
levels and dependencies. Furthermore, the modeling process
allowed us to test the modeling tool and to gain experiences by
applying it to two large-scale industrial systems. Specifically,
we investigated two research questions:

RQ1. How useful are multi-purpose, multi-level feature
models for large-scale industrial systems? We explore whether
organizing feature models in terms of distinct modeling spaces
and multiple modeling levels makes sense. This research
question addresses specifically the breadth of the resulting
models and the coverage of different spaces and levels.

RQ2. What are characteristics of specific modeling spaces?
We modeled specific areas of the systems in detail to gain
in-depth results of selected feature models. In particular, we
describe detailed metrics measuring KePlast’s problem space
and configuration space models.

A. Industrial Systems

KeMotion (2.7 million LoC) is a control system for robotics,
comprising a software platform as well as hardware control
units and mobile display units. The system offers all types
of interpolation, unlimited in the 6D space (position and
orientation). KeMotion covers the entire motion spectrum of the
robot, from track-consistent, shortest possible point-to-point
movements or driving of individual robot axes. Besides its
motion capabilities, the system offers guided programming and
execution of robot sequences.

KePlast (3.8 million LoC) is a comprehensive platform for
the automation of injection molding machines, comprising
a configurable control software framework, a visualization
system, programming tools, and a configuration tool to cus-
tomize solutions based on existing components and variants.
The platform exists in various variants, e.g., there is one specific
variant for the Chinese market.

B. Preparatory Steps

Before we started the modeling phase, several preparatory
steps were conducted:

Analyzing representations of selected features in different
modeling spaces. To better understand how people use fea-
tures in product management, product configuration, and for

388

[& Seco - KePlast/System/ProblemSpace

File Edit Navigate Search Project Run Window Help
ErTE ; 3 O o e = e e Quick Access | | Ry Resource [PESECO] Ea SVN Repository Exploring
[£ PackageExplo.. 32 = O 5= Outline 52 | g System Outline & B T=ol 5,
0% - KePlast Clamp 57 Problem space KePlast Closure Unit 2 Configuration space o]
=3 R Ciamp} =
T o [cor messesemsar s | o et =
KePlast [branc! L-DA-Edertr !/ {ciamp force transducer . . 3 4 O Mok protect
& spien P —ry <A
4 (3 ConfigurationSpace i-Mdﬂcavlly nressuresenswl If Time control
» &y Closure Unit /i~ Automatic ciamp force control E Clamp force control
iy Actuation Unitaml 5775 = © Clamp force transducer
iy Actuationaml 5775 4/1 '{-Lmdﬂﬂe‘oggelwermrve © Mokl cavity pressure sensor
4 Additional Options.xml ol © Automatic clamp force control
 Closure Unitml 5775 4 © Loadable toggle lever curve
5 Inject Unitaml 5775 4/1 o {3wen 4 © Mo tabie
& System Optionsaml 577 — % _— = a
4 (& ProblemSpace 2 working stations
+ (% Machine functions Diagram | Source 3 working stations.
> (B User interface =~ 4 working stations
' Assistantsml 5775 4/ KePlast Mold &2 Solution space 6 working stations
4 Hydraulic system.xml 57 = - o ©_Fast close hydraulic mold
4 Machine calibration.xm Dependences
] Machine functions.xml & ProblemSpace\Machine functiens'\Clamp\Mold cavity pressure sensor — ConfigurationSpace\Closure UnitCavity Pressure
' Machine sequencexml © ProblemSpace\Machine functions\Clamp\Moid cavity pressure sensor -
1 Mechanical machine ty) g @ ProblemSpace\Machine functions\Clamp\Mokl cavity pressure sensor -
il Networkaml 5775 4/12, Moid (@ ProblemSpace\Machine functions\Clamp\Mokd cavity pressure sensor -+ 1\lnge
i User interfacexml 5775 @ ProblemSpace\Machine functions'\Clamp\Mold cavity pressure sensor — i
4 (& SolutionSpace Mok ClosedLimitSwitch Requirement 3
» G Application
> (2% Control 2 Mokd1Cool_Electric adi
. Gy Tools Diagram | Source
» G View
s Applicationxml 5775 4 KePlast Setup 52 KePlast Injectionl 53
) Controloml 5775 4/12 p o g ", r
4 Teolsaxml 5775 4712/15 B :“ —— e
% Viewsxml 5775 4/12/15 ¢ E i = v
4 ConfigurationSpacexml 57 inectonmaskt | |
ProblemSpacemi 5775 4 - comcavprsenss | i = 3
N pacexm 212 - Setup ~—_ Injection! <) InjectParameterMask1
' SolutionSpacesml 5775 4/1 ~ CaibCavPrsensds X -
& Systemoml 5775 4/12/159:29 | PlasticzeMask1
3 o Ptz o
Requirement 1 & 2 P e — T — \ Pl e — &
T | Disgram|Source Diagram | Source

Fig. 2: Tool prototype showing KePlast feature models for different purposes (Requirement 1), at different levels of abstraction (Requirement 2),
and with different types of dependencies (Requirement 3). The Eclipse Package Explorer shows the entry points for the three modeling spaces.
The solution space elements Setup and Injection1 are collections whereas the solution space element Mold is a component. The FeatureIDE
tool lists all dependencies available for a selected feature, it highlights related features, and allows navigating to related features.

development (e.g., regarding different variability mechanisms),
we started with investigating exemplary features of KeMotion
and KePlast. For instance, the KePlast feature ImpulseCounter
needed for direct clamping in injection molding machines can
be found in all modeling spaces: in product management the
ImpulseCounter is represented as a standard function automatic
mold height adjust for direct clamping machines. The feature can
further be found in the product configuration tool, i.e., the
common setup of the closure unit of an injection molding
machine. At code level, the feature is reflected by a variable
representing an endpoint to optional machine equipment like
the mold-height-adjust sensor [26].

Prototypical modeling of selected subsystems. We then
created initial feature models for KeMotion using SINTEF’s
CVL 2 tool prototype [27]. Specifically, we created five models
comprising KeMotion’s configuration space features and six
models reflecting solution space features. The tool was selected
as it adheres to the proposed CVL standard [24] and supports
multiple interrelated feature models. Although the CVL 2
tool prototype was not mature enough for our purpose, the
experiences helped us to better plan our extensions to the
FeatureIDE tool suite.

Development of tool extensions. We implemented the mod-
eling approach described in Section III using FeatureIDE [12].
We selected this state-of-the-art feature modeling tool because
it is available as an open-source system and easily extensible.

However, our modeling approach could be implemented in
other feature modeling tools if needed. The workspace of the
FeatureIDE tool suite can only manage an individual feature
model. We developed extensions to manage multiple feature
models at different levels as well as dependencies between inter-
space features and collections. The extension points provided
by FeatureIDE’s core components did not support adding
new types of modeling elements. Thus, our extensions were
mainly done by exploiting inheritance, i.e., the existing model
representation of the feature tree was extended to handle the
new element types. Furthermore, the existing diagram editor
was replaced to display and handle the diagram representations
of new element types. Figure 2 shows a snapshot of the tool
prototype and the KePlast model.

C. Modeling Process

We created the feature models in two steps:

Modeling strategy and data sources. Based on the CVL
prototype models we started modeling KeMotion and KePlast,
following a top-down modeling strategy for both systems. For
KeMotion, the problem space models were created as a first
step, despite no detailed product map was available at that
time (this was only started recently by the company). We then
focused on modeling the configuration space and analyzed
the KeStudio configurator including the MotionWizard. The
author in charge of modeling the solution space has detailed

389

«, 2,
4 “, /v tz,-;”% Type
Yoy 2, %
‘3
<, Q,
& 2 O 8. e,
0, S, 7, oy, Py ?}«g, a,,
g y, % ©q 2
Lq 2 7 #4

(a) KeMotion

o
')O‘d
o
ot

o "
(0]

<
5050
£S

=
3

<
R
o
<

ot

@
B

o@! &

(b) KePlast

Fig. 3: Configuration space feature models. During product configuration, configuration decisions are first taken for features in higher-level

models, while lower-level models address more detailed configuration.

knowledge of KeMotion’s code base. The resulting models thus
provide a good coverage of the code base, however, they have
not been completed for all subsystems (cf. RQ1). For KePlast,
we started with creating the problem space models, based
on an existing product map maintained by product managers.
For creating the configuration space models we investigated
KePlast’s custom-developed configuration tool. Finally, we
created solution space models, again emphasizing breadth over
depth. We did not consider feature attributes that would be
important for product derivation and feature selection. For
instance, we did not address the binding time of the features.

Model validation and analysis. The author who created
the multi-level feature models is involved with the KeMotion
application for more than eight years and recently moved as a
developer to the KePlast team. A second author cross-checked
the created models and resulting metrics. The feature models
were iteratively refined and validated in multiple discussions.
Further, the created models were presented in a workshop with
KeMotion and KePlast architects to get feedback and to clarify
open issues. When cross-checking the feature models, we
used a dictionary standardizing domain terminology [28]. For
instance, the domain dictionary for injection molding describes
the problem space features related to HotRunner as follows: A
hotrunner is used to maintain a molten flow of plastic from
the injection molding machine nozzle to the gate in a plastic
injection mold. Such definitions are helpful to understand the
meaning of the features.

V. RESULTS AND EXPERIENCES

We present results and experiences on the usefulness of
feature modeling with multiple modeling spaces and levels.
We report system-wide model characteristics (cf. RQ1) as well
as detailed model characteristics for KePlast’s problem and
configuration space (cf. RQ2).

A. RQI — System-wide Model Characteristics

We report metrics on feature model properties as proposed
by Berger et al. [29]. More specifically, we measure the created
variability models with structural metrics concerning the size
and shape of the models. Table I summarizes the number
of features per type (mandatory, optional, alternative, and
modeling space), collections and components, as well as inter-
space and intra-space dependencies.

We further provide bubble tree diagrams visualizing the
size of feature models for the different modeling spaces and
modeling levels for KeMotion and KePlast. For instance, Fig-
ure 3a representing KeMotion’s configuration space comprises
the high-level model Robots, the second-level models Auxil-
iaryAxes and CommonSettings, and third-level models covering
configuration options for different robot types.

Modeling Spaces. The results show that for both KeMotion
and KePlast features were modeled in all three modeling
spaces. The configuration space models (cf. Figure 3) define
configuration decisions in the KeMotion and KePlast configu-
rators, reflecting Keba’s staged configuration process [18]. For
instance, KeMotion’s configuration space models for different
robot types (e.g., Tripod, or SemiScara) eliminate configuration
choices provided by GeneralRobot. KePlast’s configuration
space contains 9% mandatory features while KeMotion’s
configuration space contains 33% mandatory features. The
higher number of mandatory features is caused by a number of
core features reflecting characteristics of diverse robot types.

Figure 4 shows that some of the problem space models are
quite large, reflecting the rich capabilities and operations of
KeMotion’s domain-specific language for programming robots
(cf. TechnologyOptions and RobotLanguage) and KePlast’s Ma-
chineFunctions. KePlast’s top-level problem space models—e.g.,
MachineFunctions, MachineType, or HydraulicSystem—have been
defined based on the KePlast product map. KePlast’s problem
space contains 22% mandatory features representing standard
functionality. Optional features typically require an extra
license. KeMotion’s problem space mainly covers commands of
KeMotion ’s domain-specific language for programming robots.

TABLE I: KeMotion and KePlast model characteristics.

Characteristic KeMotion KePlast
features 395 454
mandatory 181 77
optional 154 212
alternative 60 165
configuration space 120 140
problem space 138 199
solution space 137 115
collections 48 52
components 5 5
inter-space dependencies 29 40
intra-space dependencies 5 38

390

SQ
g C0,
%, ¢ a
AL oy, % %S
R b PR
o © 5 % o R
3, b S > <
G [°] w2
% P %,
% %, 4
%
S, 2.
) w2
e
s
e, g,
8 %
< o,
Z, O,
O\"o @J»O
D, D,
7 s
>

(a) KeMotion

%% 9% 22 L&
@, Y, Tl %, %, Y
% %, IR
U 0 % Yo %,
< T R e Qe
A A)
Y e 9,
% h e %
2, %
S 5
el 4. (e} & <
Y% Y, %, (%\9 %, % @
>7 z, % Gy %, %,
£z v @ S 2,

(b) KePlast

Fig. 4: Problem space feature models. Top-level models define a high-level system capabilities while lower-level models address detailed

system characteristics.

It contains 38% mandatory features reflecting standardized
commands.

The solution space models of both KeMotion and KePlast
include several smaller feature models with less than 30
features, thus reflecting the modular design of the applica-
tions (cf. Figure 5). KeMotion’s solution space contains 36%
optional features defining capabilities of the robot programming
language. Specific robot commands used in end-user programs
are activated only during load-time, thus the instruction set was
modeled as optional features whose variability is bound at load
time. KePlast’s solution space on the other hand contains 82%
optional features, most of them in the HMI.KVB and HMI.KVS
visualization systems. The inclusion of optional visualization
system features often depends on configuration space features.
For instance, the feature CalibCavPrSens13 reflecting the user
interface for visualizing up to three cavity pressure sensors
is included depending on the configuration space feature
MoldCavityPressureSensor.

Modeling Levels. Both models comprise around 50 col-
lections and components, which establish a hierarchy of
feature models. Collections have been used frequently for
structuring the models with a nesting level ranging between
two and five. However, the solution space models are an
initial attempt to create feature-based abstractions of the
source code, and further refactoring of the larger models will
likely increase their depth. For instance, larger collections
like TechnologyOptions, RobotLanguage, or MachineFunctions will
possibly be re-modularized by extracting feature collections in
separate feature models.

Modeling Dependencies. Although revealing inter-space
dependencies was not our primary goal when creating the
models, our experiences show a lack of explicit knowledge
about feature dependencies. The author creating the models
added commonly known constraints. For instance, cross-tree
constraints were defined in KePlast’s configuration space after
analyzing KePlast’s custom-developed configurator. The KeMo-
tion and KePlast models comprise 69 inter-space dependencies
of different types—7 mapped_to, 33 implemented_by, and 29
configured_by, a first attempt for documenting relations between
features in different spaces.

B. RQ2 — Specific Model Space Characteristics

We report detailed characteristics about KePlast’s problem
and configuration space feature models, which are based on
product maps and the custom-developed configurator, i.e.,
artifacts of high maturity.

TABLE II: Model characteristics for KePlast problem and configura-
tion space models.

Characteristic KePlast CS KePlast PS

features 140 199
mandatory 12 44
optional 58 60
alternative 70 95

avg features per collection 17.5 13.3

maximum depth of leaf features 6 5

inter-space dependencies 6 34

intra-space dependencies 36 1

features with cardinality 13 -

Table II summarizes the results. The maximum depth of
leaf features considers both the depth of a feature model and
the level of the modeling space, i.e., the depth is increased
with the number of hierarchically nested collections above
a specific feature model. The maximum depth is 6 for the
configuration space and 5 for the problem space. Examples for
configuration space feature models with a maximum depth
are Actuation, ClosureUnit, ActuationSetup, and SystemOptions.
Configuring KePlast requires high domain expertise. For
instance, features modeled in the SystemOptions feature model
(cf. Figure 3b) are often related to the specific hardware
equipment of an injection molding machine.

The six exemplary inter-space dependencies modeled for
KePlast’s configuration space are of type mapped_to. These
dependencies link configuration space features (e.g., FastClo-
seValve) with solution space features (e.g., Mold1FastClose).
The intra-space dependencies (i.e., cross-tree constraints) are
also available in the custom-developed configurator, however,
could only be revealed by inspecting the tool’s source code.
Most of these constraints are related to an injection molding
machine’s actuation type (e.g., electrical or hydraulic). The
problem space models comprise a more complete set of inter-
space dependencies of types configured_by and implemented_by:

391

View

TM(h

S, °6
a& e,, e@‘_"%, ’a

e@ %,
4 o
/,0

"tl ey, o, 4,
o, %
Sy 7

Appli-

cation Control

Robot
Control

Services

System
Functions

(a) KeMotion

Appli-

Tools Control

/s

Services ology

0/16 / \
9 <,
%, “,

cation

Al

(b) KePlast

Fig. 5: Solution space feature models. Top-level elements are higher-level system functions and collections for organizing the model. Low-level

elements are fine-grained features and configuration settings.

18 of these dependencies are related to the feature model
MachineFunctions, 4 are related to MachineSequence, 8 are related
to MachineType, and 4 are related to Ul.

Features with cardinality are especially relevant in KePlast’s
configuration space models. An example for a feature with
cardinality is the MoldCavityPressureSensor, allowing for up to 4
sensors measuring cavity pressures.

C. Threats to Validity

As with any empirical research, our results may not gen-
eralize beyond the cases we considered. There is a potential
bias caused by the selection of KeMotion and KePlast, as they
are both from the industrial automation domain. However, the
systems are from two different areas (i.e., injection molding
and robotics). We also try to avoid generalizations and present
a detailed analysis of the models we created. We can only
present descriptive model metrics and cannot claim statistical
significance. However, given that companies typically do not
provide access to data about their systems we believe that our
results are valuable to other researchers and practitioners.

As the second author was in charge of creating the variability
models, it can be argued that the results are solely due to our

manipulations. However, the modeler adhered to product maps,
specification documents, custom-developed configurators, and
the code base, mature artifacts created and maintained by
diverse domain experts without any influence from our side.
We further attempted to mitigate this threat by performing an
iterative modeling process with feedback and validation based
on prototypes of the models.

VI. LESSONS LEARNED

We report observations and lessons learned we made when
modeling and validating the feature models:

Be specific about the purpose and level of features to facil-
itate the modeling process. Our modeling approach assumes
classifying features by their purpose to better understand
their role in the system. The approach further allows defining
features at different levels of granularity. The discussed feature
models comprise more than 100 structural elements in all
modeling spaces, thus indicating the need and usefulness of
modularizing feature models in such a divide-and-conquer
manner. The modularization eases involving modelers with
different background, as they can focus on their area of
expertise, i.e., product management, architecture, or product

392

configuration aspects. Our results further show that detailed
domain expertise is required for defining the feature models,
regardless of the modeling space. Typically, models could only
be created after detailed inspections of other artifacts such as
product maps, models, or source code, as we did regarding RQ2.
The results also show that the feature models are of manageable
size and a modeling tool with specific support for creating
views was not needed.

Focus on the dependencies between feature models to develop
a system-wide perspective. The feature models cannot be
defined in isolation and understanding their dependencies is fun-
damental in a feature-oriented development process. However,
revealing and understanding the dependencies between features
from different models turned out to be extremely challenging
as can be seen by the rather low numbers of dependencies.
Our observation is supported by Berger et al. [30], who found
that modelers in industry focused on building the parent-child
relationship between features, while trying to avoid cross-tree
constraints. It has been pointed out that modeling dependencies
would be very helpful, e.g., to reveal the implementation of
high-level features in the code base, or check consistency during
product derivation [31]. However, while providing modeling
support for dependencies is easy, revealing actual dependencies
between modeling spaces, and people working with features in
these spaces, is much harder. Again, involving different roles
is useful: software engineers in charge of a component can
define its solution space features, while system architects can
define dependencies between different feature models.

Provide code-level views on the features. Features in a feature
diagram are just a label and engineers want to know how the
features manifest themselves in the underlying architecture
and code base. Views based on feature-to-code mappings are
therefore particularly important. For instance, features can be
linked to program variables, which represent an initial seed of a
feature implementation. Code-level views on features can then
be provided by computing slices based on program analysis
techniques that follow the control and data dependencies.
For instance, Angerer et al. have presented an approach for
automatically computing feature slices [26], which can help
to validate manually created solution space feature models as
shown in [32]. In this way, the feature models also provide
a starting point for moving towards feature-oriented software
development (FOSD), a programming paradigm for managing
the construction, customization and synthesis of software
systems based on features as first-class citizens [33].

Feature models help to limit variability. Feature models have
originally been proposed to elicit and represent variability and
commonalities of systems’ capabilities [7]. Feature models
show explicitly what is not variable and which product
variants are not possible. Keba uses a wide range of variability
mechanisms such as interfaces to hook in new functionality;
load-time and run-time activation of modules; configuration
parameters to influence program behavior; or pre-processing
of code. Feature models define a variability interface to
components and provide a way to control the otherwise
unlimited flexibility, thus improving guidance for developers.

VII. RELATED WORK

Variability modeling is a core activity in software product
line engineering (SPLE) [34] and a wide range of variability
modeling approaches have been proposed, including feature
modeling [1], decision modeling [35], and orthogonal variability
management [3]. We discuss existing case studies on variability
modeling, research on modularization, multi product lines and
megamodels, as well as approaches for modeling dependencies
between modeling spaces.

Case studies on feature modeling in practice. Some empirical
studies exist on applying feature modeling in practice, however,
only few reports exist on variability modeling in large-scale sys-
tems. For instance, Berger et al. [30] provide a detailed analysis
of features in 128 variability models including detailed metrics
about features types, numbers of features, and feature depen-
dencies. Lee et al. [36] report detailed modeling experiences
related to an elevator control software product line comprising
490 features — 157 capability, 22 operating environment, 291
domain technology, and 20 implementation technique features.
The feature spaces used by Lee et al., originally proposed in
[7], are related to the modeling spaces we used in our approach:
Capabilities are addressed by configuration space and problem
space features. Domain technologies are reflected by solution
space features, however, some problem space features also
address domain technologies. The operating environment is
related to configuration space features representing specific
hardware equipment of an injection molding machine or a
robot. Developers are concerned about specific implementation
techniques, which are covered by solution space features.

A recently conducted case study provides an in-depth
analysis of 23 features in real-world settings based on inter-
views investigating the practical use of features in three large
companies [4]. The authors use feature facets for describing and
comparing features. Some of the facets are related to the issues
investigated in our paper. For instance, the facet use relates to
the purpose of feature models and the position in hierarchy is
related to the modeling level. Although the aims of the studies
are different, they complement each other: while Berger et al.
discuss rationales for classifying individual features as typical,
outlier, good, or bad based on the use of features in practice,
the aim of our study is to explore multi-purpose, multi-level
feature models.

Modularization and Multi product lines. MULTIDELTAJ
represents a holistic multi product line modeling approach
covering problem, solution and configuration space [37]. The
approach aims at obtaining multi product lines by fine-grained
reuse of delta-oriented product lines. Kistner et al. propose a
variability-aware module system, enabling a divide-and-conquer
strategy to software development and breaking with the anti-
modular tradition of a global variability model in product-line
development [10]. Modules are considered as product lines,
which can be type checked in isolation, however, variability
can crosscut multiple modules. Dhungana et al. present an
approach that aims at reducing the maintenance effort of
modeling product lines by organizing the modeling space as a

393

set of interrelated model fragments defining the variability of
particular parts of the system [8]. Our approach also aims
at modularizing feature models, to support the distributed
development and modeling of components. Holl et al. support
multiple users in performing distributed product derivation of
a multi product line by sharing configuration information [21].
The approach emphasizes configuration space features and their
dependencies, but can be helpful in establishing a system-wide
perspective. The Common Variability Language (CVL) [24]
is a domain-independent language proposal for specifying
and resolving variability. It facilitates the specification and
resolution of variability over any instance of a Meta-Object
Facility (MOF)-based language, which is termed a base model.
Configurable units are an integral part of CVL and are used
for grouping associated variation points.

Mega modeling. Bézivin et al. have recognized the need for
global model management using megamodels, i.e., composites
of interrelated models and meta models for describing large-
scale systems [38], [39]. Megamodels consider models as
first-class citizens and relevant dependencies are, for instance,
the conformance relation between a model and its meta
model. The Atlas Mega Model Management approach (AM3)
provides practical support for developing megamodels [40].
Similarly, Salay et al. introduce macromodels for managing
multiple models at a high level of abstraction expressed in
terms of models and their intended relationships [41]. Seibel
et al. present dynamic hierarchical megamodels combining
traceability and global management [42]. Another topic of
interest in multi-modeling is checking model consistency.
Denton et al. present the NAOMI platform for managing
multiple models developed in different modeling languages [43].
The approach analyzes dependencies to determine the impact
of changes on dependent models and to propagate changes.
As our results show the feature collections and components
in our approach can be seen as individual models used for
defining features of large-scale systems. However, we do
not manage dependencies between collections, but between
individual features in different collections.

Modeling of dependencies. Many approaches emphasize
modeling dependencies between different modeling spaces.
For instance, FeatureMapper and VML* support modeling
the relationship between problem space features and solution
space models describing product line details (e.g., requirements
models, architecture and design models) [20]. However, these
approaches do not take configuration space features into
account, which comprise around 30% of features in both
KeMotion and KePlast feature models. The COVAMOF [23]
framework models variability in terms of variation points and
variability dependencies at different levels abstraction (i.e.,
features, architecture, and implementation). COVAMOF uses
realization relations for providing a hierarchical organization
of variation points. In contrast, our approach supports nesting
feature models to build hierarchical models. Furthermore,
COVAMOF’s dependencies focus on guiding and restricting
the selection of variation points during product derivation.
Dependencies are also important in multi-level feature trees, an

add-on to traditional feature models that introduce the notion
of reference feature models, which serve as a template and
guideline for the referring model [9]. The reference model
becomes a means to strategically drive the content of the
referring model by allowing or disallowing certain deviations.
Locally introduced innovations can be made globally visible
in a step-by-step process.

VIII. CONCLUSION AND FUTURE WORK

This paper presented experiences of applying a multi-purpose,
multi-level feature modeling approach to two large-scale
industrial automation systems. We extended the FeatureIDE
tool suite to support feature models for different purposes,
at multiple levels, as well as dependencies between features
from different models. Regarding RQ1 we conclude that our
approach was feasible and useful in the context of two industrial
systems. Regarding RQ2 we reported detailed characteristics
on the size and scope of models. Our lessons learned show
that considering the purpose and level of features is useful,
that understanding dependencies between feature models is
essential for developing a system-wide perspective, that code-
level views and domain dictionaries are important to understand
the meaning of features, and that feature models help to limit
otherwise boundless variability. However, there is still a need
for further experience reports of industrial organizations moving
towards feature-oriented software development processes and
introducing feature modeling in industry.

We are currently extending the tool suite to allow cloning
of feature models. Such feature model clones are needed in
a distributed clone-and-own development process to manage
customer-specific product variants and product line exten-
sions [44]. We also plan on refining our FeatureIDE extensions
regarding support for feature-oriented and role-specific views
based on the introduced modeling spaces.

ACKNOWLEDGMENT

This work has been conducted in cooperation with
KEBA AG, Austria, and was supported by the Christian
Doppler Forschungsgesellschaft, Austria.

REFERENCES

[1] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Tech. Rep., 1990.

[2] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product
Lines in Action, 2007.

[3] K. Pohl, G. Bockle, and F. Van Der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer-Verlag,
2005.

[4] T. Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? A Qualitative Study
of Features in Industrial Software Product Lines,” in Proc. SPLC, 2015.

[5] K. Czarnecki, P. Griinbacher, R. Rabiser, K. Schmid, and A. Wasowski,
“Cool features and tough decisions: A comparison of variability modeling
approaches,” in Proc. VaMoS, 2012.

[6] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Boston, MA: Addison-Wesley, 2000.

[71 K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM:
A Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures,” Ann. Softw. Eng., vol. 5, pp. 143-168, Jan. 1998.

394

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Dhungana, P. Griinbacher, R. Rabiser, and T. Neumayer, “Structuring
the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, pp. 1108—
1122, 2010.

M.-O. Reiser and M. Weber, “Multi-level feature trees,” Requir. Eng.,
vol. 12, no. 2, pp. 57-75, 2007.

C. Kistner, K. Ostermann, and S. Erdweg, “A variability-aware module
system,” in Proc. OOPSLA, 2012.

G. Holl, P. Griinbacher, and R. Rabiser, “A systematic review and an
expert survey on capabilities supporting multi product lines,” Information
& Software Technology, vol. 54, no. 8, pp. 828-852, 2012.

T. Thiim, C. Kistner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An extensible framework for feature-oriented software
development,” Sci. Comput. Program., vol. 79, pp. 70-85, 2014.

D. Lettner, F. Angerer, H. Prihofer, and P. Griinbacher, “A Case Study on
Software Ecosystem Characteristics in Industrial Automation Software,”
in Proc. ICSSP, 2014.

D. Lettner, F. Angerer, P. Griinbacher, and H. Préihofer, “Software
Evolution in an Industrial Automation Ecosystem: An Exploratory Study,”
in Proc. SEAA, 2014.

D. Lettner, M. Petruzelka, R. Rabiser, F. Angerer, H. Prihofer,
and P. Griinbacher, “Custom-developed vs. model-based configuration
tools: Experiences from an industrial automation ecosystem,” in Proc.
MAPLE/SCALE Workshop at SPLC, 2013.

R. A. Malloy, “Plastic part design for injection molding,” in Plastic Part
Design (2nd Edition). Hanser, 2010.

D. Rosato, M. Rosato, and D. Rosato, Injection Molding Handbook (3rd
ed.). Kluwer Academic Publishers, 2000.

K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration using
feature models,” in Software Product Lines. Springer, 2004, pp. 266-283.
D. Dhungana, P. Griinbacher, and R. Rabiser, “The DOPLER meta-
tool for decision-oriented variability modeling: a multiple case study,”
Automated Software Engineering, vol. 18, no. 1, pp. 77-114, 2011.

F. Heidenreich, P. Sanchez, J. Santos, S. Zschaler, M. Alferez, J. Araujo,
L. Fuentes, A. Kulesza, Uiraand Moreira, and A. Rashid, “Relating feature
models to other models of a software product line,” in Transactions
on Aspect-Oriented Software Development VII, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, vol. 6210.

G. Holl, P. Griinbacher, C. Elsner, and T. Klambauer, “Supporting
awareness during collaborative and distributed configuration of multi
product lines,” in Proce. APSEC, 2012.

J. A. Galindo, D. Dhungana, R. Rabiser, D. Benavides, G. Botterweck,
and P. Griinbacher, “Supporting distributed product configuration by
integrating heterogeneous variability modeling approaches,” Information
and Software Technology, vol. 62, pp. 78-100, 2015.

M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “COVAMOF:
A framework for modeling variability in software product families,”
in Software Product Lines, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, vol. 3154.

CVL, “Common variability language,” 2012, http://www.omgwiki.org/
variability/doku.php?id=start&rev=1351084099, [Online; accessed 27-
April-2015].

D. Batory, “Feature models, grammars, and propositional formulas,”
in Software Product Lines, ser. Lecture Notes in Computer Science,
H. Obbink and K. Pohl, Eds., 2005, vol. 3714.

[26]

[27]

(28]

[29]

[30]

[31]

[37]
[38]

(391

[40]

[41]

[42]

[43]

[44]

395

F. Angerer, H. Prihofer, D. Lettner, A. Grimmer, and P. Griinbacher,
“Identifying inactive code in product lines with configuration-aware
system dependence graphs,” in Proc. SPLC, 2014.

SINTEF (MOD research group), “CVL 2 Tool,” 2013, http://modelbased.
net/tools/cvl-2-tool/, [Online; accessed 30-April-2015].

K. Lee, K. Kang, and J. Lee, “Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering,” in Proc. ICST, ser.
LNCS, vol. 2319, 2002.

T. Berger and J. Guo, “Towards system analysis with variability model
metrics,” in Proc. VaMoS, 2014.

T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and
A. Wasowski, “Three Cases of Feature-Based Variability Modeling in
Industry,” in Proc. MODELS, 2014.

K. Nie, T. Yue, S. Ali, L. Zhang, and Z. Fan, “Constraints: The core of
supporting automated product configuration of cyber-physical systems,” in
Model-Driven Engineering Languages and Systems, ser. LNCS. Springer

Berlin Heidelberg, 2013, vol. 8107.
L. Linsbauer, F. Angerer, P. Griinbacher, D. Lettner, H. Prihofer, R. Lopez-

Herrejon, and A. Egyed, “Recovering feature-to-code mappings in mixed-
variability software systems,” in Proc. ICSME, 2014.

S. Apel and C. Kistner, “An Overview of Feature-Oriented Software
Development,” J. Object Technology, vol. 8, no. 5, pp. 49-84, 20009.

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

K. Schmid, R. Rabiser, and P. Griinbacher, “A Comparison of Decision
Modeling Approaches in Product Lines,” in Proc. VaMoS, 2011.

K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and B. W. Choi, “Domain-
Oriented Engineering of Elevator Control Software: A Product Line
Practice,” in Proc. of the First International Conference on Software
Product Lines: Experience and Research Directions, 2000.

F. Damiani, I. Schaefer, and T. Winkelmann, “Delta-oriented multi
software product lines,” in Proc. SPLC, 2014.

J. Bézivin, F. Jouault, and P. Valduriez, “On the need for megamodels,”
Proc. OOPSLA/GPCE, 2004.

J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez, “Modeling in the
large and modeling in the small,” in Model Driven Architecture. Springer
Berlin Heidelberg, 2005, pp. 33-46.

F. Allilaire, J. Bézivin, H. Bruneliére, and F. Jouault, “Global model
management in eclipse GMT/AM3,” 2006, http://www.emn.fr/z-info/
atlanmod/index.php/Global_Model_Management, [Online; accessed July-
2015].

R. Salay, J. Mylopoulos, and S. Easterbrook, “Managing models through
macromodeling,” in Proc. ASE, 2008.

A. Seibel, S. Neumann, and H. Giese, “Dynamic hierarchical mega mod-
els: comprehensive traceability and its efficient maintenance,” Software
& Systems Modeling, vol. 9, no. 4, pp. 493-528, 2010.

T. Denton, E. Jones, S. Srinivasan, K. Owens, and R. Buskens, “NAOMI
— an experimental platform for multi-modeling,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Volter, Eds.
Springer Berlin Heidelberg, 2008, vol. 5301, pp. 143-157.

D. Lettner and P. Griinbacher, “Using feature feeds to improve developer
awareness in software ecosystem evolution,” in Proc. VaMoS, 2015.

http://www.omgwiki.org/variability/doku.php?id=start&rev=1351084099
http://www.omgwiki.org/variability/doku.php?id=start&rev=1351084099
http://modelbased.net/tools/cvl-2-tool/
http://modelbased.net/tools/cvl-2-tool/
http://www.emn.fr/z-info/atlanmod/index.php/Global_Model_Management
http://www.emn.fr/z-info/atlanmod/index.php/Global_Model_Management

	Introduction and Motivation
	Industrial Modeling Requirements
	An Example of a Feature
	Requirements for Modeling

	Modeling Approach
	Modeling KeMotion and KePlast
	Industrial Systems
	Preparatory Steps
	Modeling Process

	Results and Experiences
	RQ1 – System-wide Model Characteristics
	RQ2 – Specific Model Space Characteristics
	Threats to Validity

	Lessons Learned
	Related Work
	Conclusion and Future Work
	References

